There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.
We present BrainNet which, to our knowledge, is the first multi-person non-invasive direct brain-to-brain interface for collaborative problem solving. The interface combines electroencephalography (EEG) to record brain signals and transcranial magnetic stimulation (TMS) to deliver information noninvasively to the brain. The interface allows three human subjects to collaborate and solve a task using direct brain-to-brain communication. Two of the three subjects are designated as “Senders” whose brain signals are decoded using real-time EEG data analysis. The decoding process extracts each Sender’s decision about whether to rotate a block in a Tetris-like game before it is dropped to fill a line. The Senders’ decisions are transmitted via the Internet to the brain of a third subject, the “Receiver,” who cannot see the game screen. The Senders’ decisions are delivered to the Receiver’s brain via magnetic stimulation of the occipital cortex. The Receiver integrates the information received from the two Senders and uses an EEG interface to make a decision about either turning the block or keeping it in the same orientation. A second round of the game provides an additional chance for the Senders to evaluate the Receiver’s decision and send feedback to the Receiver’s brain, and for the Receiver to rectify a possible incorrect decision made in the first round. We evaluated the performance of BrainNet in terms of (1) Group-level performance during the game, (2) True/False positive rates of subjects’ decisions, and (3) Mutual information between subjects. Five groups, each with three human subjects, successfully used BrainNet to perform the collaborative task, with an average accuracy of 81.25%. Furthermore, by varying the information reliability of the Senders by artificially injecting noise into one Sender’s signal, we investigated how the Receiver learns to integrate noisy signals in order to make a correct decision. We found that like conventional social networks, BrainNet allows Receivers to learn to trust the Sender who is more reliable, in this case, based solely on the information transmitted directly to their brains. Our results point the way to future brain-to-brain interfaces that enable cooperative problem solving by humans using a “social network” of connected brains.
There are many kinds of neural prostheses available or being researched today. In most cases they are intended to cure or improve the condition of patients affected by some cerebral deficiency. In other cases, their goal is to provide new means to maintain or improve an individual's normal performance. In all these circumstances, one of the possible risks is that of violating the privacy of brain contents (which partly coincide with mental contents) or of depriving individuals of full control over their thoughts (mental states), as the latter are at least partly detectable by new prosthetic technologies. Given the (ethical) premise that the absolute privacy and integrity of the most relevant part of one's brain data is (one of) the most valuable and inviolable human right(s), I argue that a (technical) principle should guide the design and regulation of new neural prostheses. The premise is justified by the fact that whatever the coercion, the threat or the violence undergone, the person can generally preserve a “private repository” of thought in which to defend her convictions and identity, her dignity, and autonomy. Without it, the person may end up in a state of complete subjection to other individuals. The following functional principle is that neural prostheses should be technically designed and built so as to prevent such outcomes. They should: (a) incorporate systems that can find and signal the unauthorized detection, alteration, and diffusion of brain data and brain functioning; (b) be able to stop any unauthorized detection, alteration, and diffusion of brain data. This should not only regard individual devices, but act as a general (technical) operating principle shared by all interconnected systems that deal with decoding brain activity and brain functioning.