50
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Book Chapter: found
      Vitamin-Binding Proteins 

      Rapid Pre-Genomic Responses of Vitamin D

      other
      , , , ,
      CRC Press

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references139

          • Record: found
          • Abstract: not found
          • Article: not found

          The nuclear vitamin D receptor: biological and molecular regulatory properties revealed.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            1alpha,25-Dihydroxyvitamin D3 upregulates FGF23 gene expression in bone: the final link in a renal-gastrointestinal-skeletal axis that controls phosphate transport.

            Fibroblast growth factor (FGF)23 is a phosphaturic hormone that decreases circulating 1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] and elicits hypophosphatemia, both of which contribute to rickets/osteomalacia. It has been shown recently that serum FGF23 increases after treatment with renal 1,25(OH)(2)D(3) hormone, suggesting that 1,25(OH)(2)D(3) negatively feedback controls its levels by inducing FGF23. To establish the tissue of origin and the molecular mechanism by which 1,25(OH)(2)D(3) increases circulating FGF23, we administered 1,25(OH)(2)D(3) to C57BL/6 mice. Within 24 h, these mice displayed a dramatic elevation in serum immunoreactive FGF23, and the expression of FGF23 mRNA in bone was significantly upregulated by 1,25(OH)(2)D(3), but there was no effect in several other tissues. Furthermore, we treated rat UMR-106 osteoblast-like cells with 1,25(OH)(2)D(3), and real-time PCR analysis revealed a dose- and time-dependent stimulation of FGF23 mRNA concentrations. The maximum increase in FGF23 mRNA was 1,024-fold at 10(-7) M 1,25(OH)(2)D(3) after 24-h treatment, but statistically significant differences were observed as early as 4 h after 1,25(OH)(2)D(3) treatment. In addition, using cotreatment with actinomycin D or cycloheximide, we observed that 1,25(OH)(2)D(3) regulation of FGF23 gene expression occurs at the transcriptional level, likely via the nuclear vitamin D receptor, and is dependent on synthesis of an intermediary transfactor. These results indicate that bone is a major site of FGF23 expression and source of circulating FGF23 after 1,25(OH)(2)D(3) administration or physiological upregulation. Our data also establish FGF23 induction by 1,25(OH)(2)D(3) in osteoblasts as a feedback loop between these two hormones that completes a kidney-intestine-bone axis that mediates phosphate homeostasis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human calcium-sensing receptor gene. Vitamin D response elements in promoters P1 and P2 confer transcriptional responsiveness to 1,25-dihydroxyvitamin D.

              The calcium-sensing receptor (CASR), expressed in parathyroid chief cells, thyroid C-cells, and cells of the kidney tubule, is essential for maintenance of calcium homeostasis. Here we show parathyroid, thyroid, and kidney CASR mRNA levels increased 2-fold at 15 h after intraperitoneal injection of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) in rats. Human thyroid C-cell (TT) and kidney proximal tubule cell (HKC) CASR gene transcription increased approximately 2-fold at 8 and 12 h after 1,25(OH)2D3 treatment. The human CASR gene has two promoters yielding alternative transcripts containing either exon 1A or exon 1B 5'-untranslated region sequences that splice to exon 2 some 242 bp before the ATG translation start site. Transcriptional start sites were identified in parathyroid gland and TT cells; that for promoter P1 lies 27 bp downstream of a TATA box, whereas that for promoter P2, which lacks a TATA box, lies in a GC-rich region. In HKC cells, transcriptional activity of a P1 reporter gene construct was 11-fold and of P2 was 33-fold above basal levels. 10(-8) m 1,25(OH)2D3 stimulated P1 activity 2-fold and P2 activity 2.5-fold. Vitamin D response elements (VDREs), in which half-sites (6 bp) are separated by three nucleotides, were identified in both promoters and shown to confer 1,25(OH)2D3 responsiveness to a heterologous promoter. This responsiveness was lost when the VDREs were mutated. In electrophoretic mobility shift assays with either in vitro transcribed/translated vitamin D receptor and retinoid X receptor-alpha, or HKC nuclear extract, specific protein-DNA complexes were formed in the presence of 1,25(OH)2D3 on oligonucleotides representing the P1 and P2 VDREs. In summary, functional VDREs have been identified in the CASR gene and provide the mechanism whereby 1,25(OH)2D up-regulates parathyroid, thyroid C-cell, and kidney CASR expression.
                Bookmark

                Author and book information

                Book Chapter
                August 06 2013
                July 16 2013
                : 71-88
                10.1201/b15313-6
                3e12ea47-935f-402c-9697-7f64271d99ab
                History

                Comments

                Comment on this book

                Book chapters

                Similar content1,642