14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Sekretion und Exkretion Funktionelle und morphologische Organisation der Zelle : 2. wissenschaftliche Konferenz der Gesellschaft Deutscher Naturforscher und Ärzte Schloß Reinhardsbrunn bei Friedrichroda 1964 

      Beziehungen zwischen Zellstruktur und Stofftransport in der Niere

      other
      Springer Berlin Heidelberg

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references83

          • Record: found
          • Abstract: found
          • Article: not found

          JUNCTIONAL COMPLEXES IN VARIOUS EPITHELIA

          The epithelia of a number of glands and cavitary organs of the rat and guinea pig have been surveyed, and in all cases investigated, a characteristic tripartite junctional complex has been found between adjacent cells. Although the complex differs in precise arrangement from one organ to another, it has been regularly encountered in the mucosal epithelia of the stomach, intestine, gall bladder, uterus, and oviduct; in the glandular epithelia of the liver, pancreas, parotid, stomach, and thyroid; in the epithelia of pancreatic, hepatic, and salivary ducts; and finally, between the epithelial cells of the nephron (proximal and distal convolution, collecting ducts). The elements of the complex, identified as zonula occludens (tight junction), zonula adhaerens (intermediary junction), and macula adhaerens (desmosome), occupy a juxtaluminal position and succeed each other in the order given in an apical-basal direction. The zonula occludens (tight junction) is characterized by fusion of the adjacent cell membranes resulting in obliteration of the intercellular space over variable distances. Within the obliterated zone, the dense outer leaflets of the adjoining cell membranes converge to form a single intermediate line. A diffuse band of dense cytoplasmic material is often associated with this junction, but its development varies from one epithelium to another. The zonula adhaerens (intermediate junction) is characterized by the presence of an intercellular space (∼200 A) occupied by homogeneous, apparently amorphous material of low density; by strict parallelism of the adjoining cell membranes over distances of 0.2 to 0.5 µ; and by conspicuous bands of dense material located in the subjacent cytoplasmic matrix. The desmosome or macula adhaerens is also characterized by the presence of an intercellular space (∼240 A) which, in this case, contains a central disc of dense material; by discrete cytoplasmic plaques disposed parallel to the inner leaflet of each cell membrane; and by the presence of bundles of cytoplasmic fibrils converging on the plaques. The zonula occludens appears to form a continuous belt-like attachment, whereas the desmosome is a discontinuous, button-like structure. The zomula adhaerens is continuous in most epithelia but discontinuous in some. Observations made during experimental hemoglobinuria in rats showed that the hemoglobin, which undergoes enough concentration in the nephron lumina to act as an electron-opaque mass tracer, does not penetrate the intercellular spaces beyond the zonula occludens. Similar observations were made in pancreatic acini and ducts where discharged zymogen served as a mass tracer. Hence the tight junction is impervious to concentrated protein solutions and appears to function as a diffusion barrier or "seal." The desmosome and probably also the zonula adhaerens may represent intercellular attachment devices.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A STUDY OF FIXATION FOR ELECTRON MICROSCOPY

            G E Palade (1952)
            Osmium tetroxide fixation of tissue blocks, as usually effected, is preceded by an acidification of the tissue. This acidification is probably responsible for morphological alterations which are notably disturbing in electron microscopy. The acidification and the resulting morphological alterations cannot be prevented by homogenizing the tissue directly in OsO4 solutions or by adding enzyme inhibitors (fluoride, iodoscetamide) to the fixative. Fixation experiments with buffered OsO4 solutions have shown that the appearance of the fixed cells is conditioned by the pH of the fixative. The quality of fixation can be materially improved by buffering the OsO4 solutions at pH 7.3-7.5, The acetate-veronal buffer appeared to be the most favorable of the buffers tested, Because of these findings, 1 per cent OsO4 buffered at pH 7.3-7.5 with acetate-veronal buffer is recommended as an appropriate fixative for electron microscopy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CYTOCHEMISTRY AND ELECTRON MICROSCOPY

              The aldehydes introduced in this paper and the more appropriate concentrations for their general use as fixatives are: 4 to 6.5 per cent glutaraldehyde, 4 per cent glyoxal, 12.5 per cent hydroxyadipaldehyde, 10 per cent crotonaldehyde, 5 per cent pyruvic aldehyde, 10 per cent acetaldehyde, and 5 per cent methacrolein. These were prepared as cacodylate- or phosphate-buffered solutions (0.1 to 0.2 M, pH 6.5 to 7.6) that, with the exception of glutaraldehyde, contained sucrose (0.22 to 0.55 M). After fixation of from 0.5 hour to 24 hours, the blocks were stored in cold (4°C) buffer (0.1 M) plus sucrose (0.22 M). This material was used for enzyme histochemistry, for electron microscopy (both with and without a second fixation with 1 or 2 per cent osmium tetroxide) after Epon embedding, and for the combination of the two techniques. After fixation in aldehyde, membranous differentiations of the cell were not apparent and the nuclear structure differed from that commonly observed with osmium tetroxide. A postfixation in osmium tetroxide, even after long periods of storage, developed an image that—notable in the case of glutaraldehyde—was largely indistinguishable from that of tissues fixed under optimal conditions with osmium tetroxide alone. Aliesterase, acetylcholinesterase, alkaline phosphatase, acid phosphatase, 5-nucleotidase, adenosine triphosphatase, and DPNH and TPNH diaphorase activities were demonstrable histochemically after most of the fixatives. Cytochrome oxidase, succinic dehydrogenase, and glucose-6-phosphatase were retained after hydroxyaldipaldehyde and, to a lesser extent, after glyoxal fixation. The final product of the activity of several of the above-mentioned enzymes was localized in relation to the fine structure. For this purpose the double fixation procedure was used, selecting in each case the appropriate aldehyde.
                Bookmark

                Author and book information

                Book Chapter
                1965
                : 343-377
                10.1007/978-3-642-92908-3_18
                5b0bcf80-1e49-4ba5-ae62-7591dbf3b536
                History

                Comments

                Comment on this book

                Book chapters

                Similar content3,413

                Cited by1