3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Book Chapter: not found
      Sex in Cetaceans : Morphology, Behavior, and the Evolution of Sexual Strategies 

      Cetacean Evolution: Copulatory and Birthing Consequences of Pelvic and Hindlimb Reduction

      other
      , ,
      Springer International Publishing

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The earliest fossil cetaceans (archaeocetes) dramatically shifted the shape and articulation of the pelvis and hindlimbs during the land-to-sea transition. Archaeocetes were mostly semi-aquatic “walking whales” that used powerful hindlimbs to walk on land and swim to reach new aquatic sources of food. However, skeletons of the latest diverging lineages of archaeocetes, the basilosaurids, showed that the pelvis initially lost articulation with the sacrum, and hindlimbs were reduced and encased within the body wall. Consequently, basilosaurids were no longer able to bear their weight on land and probably had a different mating strategy compared to the other archaeocetes. Basilosaurid mating behaviors were probably consistent with those of modern cetaceans, including lateral- and ventral-facing copulation. Moreover, a pelvic girdle that was no longer constrained by vertebral and limb attachments likely freed fetal development from size constraints at birth, allowing for the birth of large fetuses. This study reports new data showing growth of the pelvis with age in modern bowhead whales ( Balaena mysticetus) and their implications for left-right asymmetry and sex difference in pelvic dimensions among modern cetaceans. Reproductive structures present in modern cetaceans and artiodactyls were probably present in archaeocetes, including pelvic attachment of muscles associated with erection and mobility of the penis, the ischiocavernosus, in males and the clitoris of females. Within females, transverse folds along the vaginal canal are present in some terrestrial artiodactyls, modern cetaceans, and probably archaeocetes. Vaginal folds were probably exapted to assist in successful aquatic copulation in all fossil and modern cetaceans as they may protect some sperm from the lethal effects of sea water. Taken together, shifts in the pelvic girdle of cetaceans occurred over 40 million years ago and probably required changes in mating behaviors that were consistent with those seen in modern cetaceans.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer.

          The molecular mechanisms underlying major phenotypic changes that have evolved repeatedly in nature are generally unknown. Pelvic loss in different natural populations of threespine stickleback fish has occurred through regulatory mutations deleting a tissue-specific enhancer of the Pituitary homeobox transcription factor 1 (Pitx1) gene. The high prevalence of deletion mutations at Pitx1 may be influenced by inherent structural features of the locus. Although Pitx1 null mutations are lethal in laboratory animals, Pitx1 regulatory mutations show molecular signatures of positive selection in pelvic-reduced populations. These studies illustrate how major expression and morphological changes can arise from single mutational leaps in natural populations, producing new adaptive alleles via recurrent regulatory alterations in a key developmental control gene.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Whales originated from aquatic artiodactyls in the Eocene epoch of India.

            Although the first ten million years of whale evolution are documented by a remarkable series of fossil skeletons, the link to the ancestor of cetaceans has been missing. It was known that whales are related to even-toed ungulates (artiodactyls), but until now no artiodactyls were morphologically close to early whales. Here we show that the Eocene south Asian raoellid artiodactyls are the sister group to whales. The raoellid Indohyus is similar to whales, and unlike other artiodactyls, in the structure of its ears and premolars, in the density of its limb bones and in the stable-oxygen-isotope composition of its teeth. We also show that a major dietary change occurred during the transition from artiodactyls to whales and that raoellids were aquatic waders. This indicates that aquatic life in this lineage occurred before the origin of the order Cetacea.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The evolution of mammalian brain size

              An in-depth look at mammalian brain size evolution prompts a reevaluation of a traditional paradigm. Relative brain size has long been considered a reflection of cognitive capacities and has played a fundamental role in developing core theories in the life sciences. Yet, the notion that relative brain size validly represents selection on brain size relies on the untested assumptions that brain-body allometry is restrained to a stable scaling relationship across species and that any deviation from this slope is due to selection on brain size. Using the largest fossil and extant dataset yet assembled, we find that shifts in allometric slope underpin major transitions in mammalian evolution and are often primarily characterized by marked changes in body size. Our results reveal that the largest-brained mammals achieved large relative brain sizes by highly divergent paths. These findings prompt a reevaluation of the traditional paradigm of relative brain size and open new opportunities to improve our understanding of the genetic and developmental mechanisms that influence brain size.
                Bookmark

                Author and book information

                Book Chapter
                2023
                September 26 2023
                : 65-83
                10.1007/978-3-031-35651-3_4
                61e833de-9b31-4524-9cec-7357e62cf763
                History

                Comments

                Comment on this book

                Book chapters

                Similar content524