22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      The Periglacial Environment 4e 

      References

      other
      John Wiley & Sons, Ltd

      Read this book at

      Publisher
      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references1,330

          • Record: found
          • Abstract: not found
          • Article: not found

          Accelerated decline in the Arctic sea ice cover

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Increasing river discharge to the Arctic Ocean.

            Synthesis of river-monitoring data reveals that the average annual discharge of fresh water from the six largest Eurasian rivers to the Arctic Ocean increased by 7% from 1936 to 1999. The average annual rate of increase was 2.0 +/- 0.7 cubic kilometers per year. Consequently, average annual discharge from the six rivers is now about 128 cubic kilometers per year greater than it was when routine measurements of discharge began. Discharge was correlated with changes in both the North Atlantic Oscillation and global mean surface air temperature. The observed large-scale change in freshwater flux has potentially important implications for ocean circulation and climate.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The effect of permafrost thaw on old carbon release and net carbon exchange from tundra.

              Permafrost soils in boreal and Arctic ecosystems store almost twice as much carbon as is currently present in the atmosphere. Permafrost thaw and the microbial decomposition of previously frozen organic carbon is considered one of the most likely positive climate feedbacks from terrestrial ecosystems to the atmosphere in a warmer world. The rate of carbon release from permafrost soils is highly uncertain, but it is crucial for predicting the strength and timing of this carbon-cycle feedback effect, and thus how important permafrost thaw will be for climate change this century and beyond. Sustained transfers of carbon to the atmosphere that could cause a significant positive feedback to climate change must come from old carbon, which forms the bulk of the permafrost carbon pool that accumulated over thousands of years. Here we measure net ecosystem carbon exchange and the radiocarbon age of ecosystem respiration in a tundra landscape undergoing permafrost thaw to determine the influence of old carbon loss on ecosystem carbon balance. We find that areas that thawed over the past 15 years had 40 per cent more annual losses of old carbon than minimally thawed areas, but had overall net ecosystem carbon uptake as increased plant growth offset these losses. In contrast, areas that thawed decades earlier lost even more old carbon, a 78 per cent increase over minimally thawed areas; this old carbon loss contributed to overall net ecosystem carbon release despite increased plant growth. Our data document significant losses of soil carbon with permafrost thaw that, over decadal timescales, overwhelms increased plant carbon uptake at rates that could make permafrost a large biospheric carbon source in a warmer world.
                Bookmark

                Author and book information

                Book Chapter
                October 27 2017
                : 423-501
                10.1002/9781119132820.refs
                850200b0-78fa-4387-99cc-012dcad47d5b
                History

                Comments

                Comment on this book

                Book chapters

                Similar content864