14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Comparative Physiology of Fasting, Starvation, and Food Limitation 

      A History of Modern Research into Fasting, Starvation, and Inanition

      other
      ,
      Springer Berlin Heidelberg

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references122

          • Record: found
          • Abstract: found
          • Article: not found

          The stress response in fish.

          The stress response in teleost fish shows many similarities to that of the terrestrial vertebrates. These concern the principal messengers of the brain-sympathetic-chromaffin cell axis (equivalent of the brain-sympathetic-adrenal medulla axis) and the brain-pituitary-interrenal axis (equivalent of the brain-pituitary-adrenal axis), as well as their functions, involving stimulation of oxygen uptake and transfer, mobilization of energy substrates, reallocation of energy away from growth and reproduction, and mainly suppressive effects on immune functions. There is also growing evidence for intensive interaction between the neuroendocrine system and the immune system in fish. Conspicuous differences, however, are present, and these are primarily related to the aquatic environment of fishes. For example, stressors increase the permeability of the surface epithelia, including the gills, to water and ions, and thus induce systemic hydromineral disturbances. High circulating catecholamine levels as well as structural damage to the gills and perhaps the skin are prime causal factors. This is associated with increased cellular turnover in these organs. In fish, cortisol combines glucocorticoid and mineralocorticoid actions, with the latter being essential for the restoration of hydromineral homeostasis, in concert with hormones such as prolactin (in freshwater) and growth hormone (in seawater). Toxic stressors are part of the stress literature in fish more so than in mammals. This is mainly related to the fact that fish are exposed to aquatic pollutants via the extensive and delicate respiratory surface of the gills and, in seawater, also via drinking. The high bioavailability of many chemicals in water is an additional factor. Together with the variety of highly sensitive perceptive mechanisms in the integument, this may explain why so many pollutants evoke an integrated stress response in fish in addition to their toxic effects at the cell and tissue levels. Exposure to chemicals may also directly compromise the stress response by interfering with specific neuroendocrine control mechanisms. Because hydromineral disturbance is inherent to stress in fish, external factors such as water pH, mineral composition, and ionic calcium levels have a significant impact on stressor intensity. Although the species studied comprise a small and nonrepresentative sample of the almost 20,000 known teleost species, there are many indications that the stress response is variable and flexible in fish, in line with the great diversity of adaptations that enable these animals to live in a large variety of aquatic habitats.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Brain metabolism during fasting.

            Catheterization of cerebral vessels in three obese patients undergoing 5-6 wk of starvation demonstrated that beta-hydroxybutyrate and acetoacetate replaced glucose as the predominant fuel for brain metabolism. A strikingly low respiratory quotient was also observed, suggesting a carboxylation mechanism as a means of disposing of some of the carbon of the consumed substrates.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rapid reversible changes in organ size as a component of adaptive behaviour.

              Organ structures and correlated metabolic features (e.g. metabolic rate) have often taken as fixed attributes of fully grown individual vertebrates. When measurements of these attributes became available they were often used as representative values for the species, disregarding the specific conditions during which the mesurement were made. Evidence is accumulating that the functional size of organs and aspects of the metabolic physiology of an individual may show great flexibility over timescales of weeks and even days depending on physiological status, environmental conditions and behavioural goals. This flexibility is a way for animals to cope successfully with a much wider range of conditions occurring during various life-cycle events than fixed metabolic machinery would allow. Such phenotypic flexibility is likely to be a common adaptive syndrome, typical of vertebrates living in variable environments.
                Bookmark

                Author and book information

                Book Chapter
                2012
                May 17 2012
                : 7-23
                10.1007/978-3-642-29056-5_2
                8949b470-efae-4c46-a1bf-3f7ba597d0da
                History

                Comments

                Comment on this book

                Book chapters

                Similar content2,675

                Cited by1