4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Plastids 

      Analysis of the MTL Supercomplex at Contact Sites Between Mitochondria and Plastids

      other
      Springer US

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          PHOSPHATE ACQUISITION.

          Phosphorus is one of the major plant nutrients that is least available in the soil. Consequently, plants have developed numerous morphological, physiological, biochemical, and molecular adaptations to acquire phosphate (Pi). Enhanced ability to acquire Pi and altered gene expression are the hallmarks of plant adaptation to Pi deficiency. The intricate mechanisms involved in maintaining Pi homeostasis reflect the complexity of Pi acquisition and translocation in plants. Recent discoveries of multiple Pi transporters have opened up opportunities to study the molecular basis of Pi acquisition by plants. An increasing number of genes are now known to be activated under Pi starvation. Some of these genes may be involved in Pi acquisition, transfer, and signal transduction during Pi stress. This review provides an overview of plant adaptations leading to enhanced Pi acquisition, with special emphasis on recent developments in the molecular biology of Pi acquisition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Acyl-lipid metabolism.

            Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants.

              As an essential plant macronutrient, the low availability of phosphorus (P) in most soils imposes serious limitation on crop production. Plants have evolved complex responsive and adaptive mechanisms for acquisition, remobilization and recycling of phosphate (Pi) to maintain P homeostasis. Spatio-temporal molecular, physiological, and biochemical Pi deficiency responses developed by plants are the consequence of local and systemic sensing and signaling pathways. Pi deficiency is sensed locally by the root system where hormones serve as important signaling components in terms of developmental reprogramming, leading to changes in root system architecture. Root-to-shoot and shoot-to-root signals, delivered through the xylem and phloem, respectively, involving Pi itself, hormones, miRNAs, mRNAs, and sucrose, serve to coordinate Pi deficiency responses at the whole-plant level. A combination of chromatin remodeling, transcriptional and posttranslational events contribute to globally regulating a wide range of Pi deficiency responses. In this review, recent advances are evaluated in terms of progress toward developing a comprehensive understanding of the molecular events underlying control over P homeostasis. Application of this knowledge, in terms of developing crop plants having enhanced attributes for P use efficiency, is discussed from the perspective of agricultural sustainability in the face of diminishing global P supplies. © 2014 Institute of Botany, Chinese Academy of Sciences.
                Bookmark

                Author and book information

                Book Chapter
                2018
                July 10 2018
                : 173-188
                10.1007/978-1-4939-8654-5_12
                9da18f3d-7825-4b6e-a7a0-d20531634cd6
                History

                Comments

                Comment on this book

                Book chapters

                Similar content6,477

                Cited by1