13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found

      Modelling Gene Assembly in Ciliates

      other

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          The DNA of ciliated protozoa.

          Ciliates contain two types of nuclei: a micronucleus and a macronucleus. The micronucleus serves as the germ line nucleus but does not express its genes. The macronucleus provides the nuclear RNA for vegetative growth. Mating cells exchange haploid micronuclei, and a new macronucleus develops from a new diploid micronucleus. The old macronucleus is destroyed. This conversion consists of amplification, elimination, fragmentation, and splicing of DNA sequences on a massive scale. Fragmentation produces subchromosomal molecules in Tetrahymena and Paramecium cells and much smaller, gene-sized molecules in hypotrichous ciliates to which telomere sequences are added. These molecules are then amplified, some to higher copy numbers than others. rDNA is differentially amplified to thousands of copies per macronucleus. Eliminated sequences include transposonlike elements and sequences called internal eliminated sequences that interrupt gene coding regions in the micronuclear genome. Some, perhaps all, of these are excised as circular molecules and destroyed. In at least some hypotrichs, segments of some micronuclear genes are scrambled in a nonfunctional order and are recorded during macronuclear development. Vegetatively growing ciliates appear to possess a mechanism for adjusting copy numbers of individual genes, which corrects gene imbalances resulting from random distribution of DNA molecules during amitosis of the macronucleus. Other distinctive features of ciliate DNA include an altered use of the conventional stop codons.
            Bookmark
            • Record: found
            • Abstract: not found
            • Book: not found

            DNA Computing

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genome gymnastics: unique modes of DNA evolution and processing in ciliates.

              In some ciliates, the DNA sequences of the germline genomes have been profoundly modified during evolution, providing unprecedented examples of germline DNA malleability. Although the significance of the modifications and malleability is unclear, they may reflect the evolution of mechanisms that facilitate evolution. Because of the modifications, these ciliates must perform remarkable feats of cutting, splicing, rearrangement and elimination of DNA sequences to convert the chromosomal DNA in the germline genome (micronuclear genome) into gene-sized DNA molecules in the somatic genome (macronuclear genome). How these manipulations of DNA are guided and carried out is largely unknown. However, the organization and manipulation of ciliate DNA sequences are new phenomena that expand a general appreciation for the flexibility of DNA in evolution and development.
                Bookmark

                Author and book information

                Book Chapter
                2004
                : 105-124
                10.1007/978-3-642-18734-6_5
                a7ea6016-6700-40b8-b112-175ba0d60e85
                History

                Comments

                Comment on this book

                Book chapters

                Similar content4,861