Almost everyone who has a limb amputated will experience a phantom limb--the vivid impression that the limb is not only still present, but in some cases, painful. There is now a wealth of empirical evidence demonstrating changes in cortical topography in primates following deafferentation or amputation, and this review will attempt to relate these in a systematic way to the clinical phenomenology of phantom limbs. With the advent of non-invasive imaging techniques such as MEG (magnetoencephalogram) and functional MRI, topographical reorganization can also be demonstrated in humans, so that it is now possible to track perceptual changes and changes in cortical topography in individual patients. We suggest, therefore, that these patients provide a valuable opportunity not only for exploring neural plasticity in the adult human brain but also for understanding the relationship between the activity of sensory neurons and conscious experience. We conclude with a theory of phantom limbs, some striking demonstrations of phantoms induced in normal subjects, and some remarks about the relevance of these phenomena to the question of how the brain constructs a 'body image.'