2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 : 27th International Conference, Marrakesh, Morocco, October 6–10, 2024, Proceedings, Part III 

      PRISM: A Promptable and Robust Interactive Segmentation Model with Visual Prompts

      other
      , , , ,
      Springer Nature Switzerland

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation

          Biomedical imaging is a driver of scientific discovery and a core component of medical care and is being stimulated by the field of deep learning. While semantic segmentation algorithms enable image analysis and quantification in many applications, the design of respective specialized solutions is non-trivial and highly dependent on dataset properties and hardware conditions. We developed nnU-Net, a deep learning-based segmentation method that automatically configures itself, including preprocessing, network architecture, training and post-processing for any new task. The key design choices in this process are modeled as a set of fixed parameters, interdependent rules and empirical decisions. Without manual intervention, nnU-Net surpasses most existing approaches, including highly specialized solutions on 23 public datasets used in international biomedical segmentation competitions. We make nnU-Net publicly available as an out-of-the-box tool, rendering state-of-the-art segmentation accessible to a broad audience by requiring neither expert knowledge nor computing resources beyond standard network training.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interactive Medical Image Segmentation Using Deep Learning With Image-Specific Fine Tuning

            Convolutional neural networks (CNNs) have achieved state-of-the-art performance for automatic medical image segmentation. However, they have not demonstrated sufficiently accurate and robust results for clinical use. In addition, they are limited by the lack of image-specific adaptation and the lack of generalizability to previously unseen object classes (a.k.a. zero-shot learning). To address these problems, we propose a novel deep learning-based interactive segmentation framework by incorporating CNNs into a bounding box and scribble-based segmentation pipeline. We propose image-specific fine tuning to make a CNN model adaptive to a specific test image, which can be either unsupervised (without additional user interactions) or supervised (with additional scribbles). We also propose a weighted loss function considering network and interaction-based uncertainty for the fine tuning. We applied this framework to two applications: 2-D segmentation of multiple organs from fetal magnetic resonance (MR) slices, where only two types of these organs were annotated for training and 3-D segmentation of brain tumor core (excluding edema) and whole brain tumor (including edema) from different MR sequences, where only the tumor core in one MR sequence was annotated for training. Experimental results show that: 1) our model is more robust to segment previously unseen objects than state-of-the-art CNNs; 2) image-specific fine tuning with the proposed weighted loss function significantly improves segmentation accuracy; and 3) our method leads to accurate results with fewer user interactions and less user time than traditional interactive segmentation methods.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Medical Segmentation Decathlon

              International challenges have become the de facto standard for comparative assessment of image analysis algorithms. Although segmentation is the most widely investigated medical image processing task, the various challenges have been organized to focus only on specific clinical tasks. We organized the Medical Segmentation Decathlon (MSD)—a biomedical image analysis challenge, in which algorithms compete in a multitude of both tasks and modalities to investigate the hypothesis that a method capable of performing well on multiple tasks will generalize well to a previously unseen task and potentially outperform a custom-designed solution. MSD results confirmed this hypothesis, moreover, MSD winner continued generalizing well to a wide range of other clinical problems for the next two years. Three main conclusions can be drawn from this study: (1) state-of-the-art image segmentation algorithms generalize well when retrained on unseen tasks; (2) consistent algorithmic performance across multiple tasks is a strong surrogate of algorithmic generalizability; (3) the training of accurate AI segmentation models is now commoditized to scientists that are not versed in AI model training. International challenges have become the de facto standard for comparative assessment of image analysis algorithms. Here, the authors present the results of a biomedical image segmentation challenge, showing that a method capable of performing well on multiple tasks will generalize well to a previously unseen task.
                Bookmark

                Author and book information

                Book Chapter
                2024
                October 03 2024
                : 389-399
                10.1007/978-3-031-72384-1_37
                aa7b4ba9-eaf0-459b-a335-f94d67b9ee02
                History

                Comments

                Comment on this book

                Book chapters

                Similar content4,538