12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      The Prokaryotes 

      The Family Myxococcaceae

      reference
      ,
      Springer Berlin Heidelberg

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references95

          • Record: found
          • Abstract: found
          • Article: not found

          Evolution of sensory complexity recorded in a myxobacterial genome.

          Myxobacteria are single-celled, but social, eubacterial predators. Upon starvation they build multicellular fruiting bodies using a developmental program that progressively changes the pattern of cell movement and the repertoire of genes expressed. Development terminates with spore differentiation and is coordinated by both diffusible and cell-bound signals. The growth and development of Myxococcus xanthus is regulated by the integration of multiple signals from outside the cells with physiological signals from within. A collection of M. xanthus cells behaves, in many respects, like a multicellular organism. For these reasons M. xanthus offers unparalleled access to a regulatory network that controls development and that organizes cell movement on surfaces. The genome of M. xanthus is large (9.14 Mb), considerably larger than the other sequenced delta-proteobacteria. We suggest that gene duplication and divergence were major contributors to genomic expansion from its progenitor. More than 1,500 duplications specific to the myxobacterial lineage were identified, representing >15% of the total genes. Genes were not duplicated at random; rather, genes for cell-cell signaling, small molecule sensing, and integrative transcription control were amplified selectively. Families of genes encoding the production of secondary metabolites are overrepresented in the genome but may have been received by horizontal gene transfer and are likely to be important for predation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Update of the All-Species Living Tree Project based on 16S and 23S rRNA sequence analyses.

            The "All-Species Living Tree Project" (LTP) provides the scientific community with a useful taxonomic tool consisting of a curated database of type strain sequences, a universal and optimized alignment and a single phylogenetic tree harboring all the type strains of the hitherto classified species. On the website http://www.arb-silva.de/projects/living-tree an update has been regularly maintained by including the 1301 new descriptions that have appeared in the validation and notification lists of the IJSEM journal. The topology of the 16S rRNA-based tree was validated with a detailed comparison against a collection of taxa-specific and broad-range trees made using different approaches, subsets of sequences and alignments. Seven percent of the classified species is still missing, as their type strains do not have a good quality SSU sequence. In addition, a new database of type strains for which adequate 23S rRNA entries existed in public repositories was built. Among the 8602 species with validly published names until February 2010, we were able to find good quality LSU representatives for 792 type strains, whereas around 91% of the complete catalogue still remains unsequenced. Despite the scarce representation of some groups in LSU databases, we have devised a highly optimized alignment and a reliable LSU tree in order to set up a stable phylogenetic starting point for taxonomic purposes. The current release corresponds to the fourth update of the project (LTPs102), and contains additional features which increase usability and compatibility. Use the contact address living-tree@arb-silva.de to provide additional input for the development of this taxonomic tool. Copyright © 2010 Elsevier GmbH. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biology and global distribution of myxobacteria in soils.

              W Dawid (2000)
              This review presents an overview of the present status of the biology of the myxobacteria, including the molecular biology of the systems that control and regulate myxobacterial gliding movement and morphogenesis. The present status of myxobacterial taxonomy and phylogeny is described. The evolutionary biology of the myxobacteria is emphasized with respect to their social behavior and the molecular basis of their signal chains. Most important within the metabolic physiology are the biologically active secondary metabolites of myxobacteria and their molecular mechanisms of action. The global distribution of myxobacteria in soils is described on the basis of data given in the literature as well as of comprehensive analyses of 1398 soil samples from 64 countries of all continents. The results are analyzed with respect to the spectrum and number of species depending on ecological and habitat-specific factors. The myxobacterial floras of different climate zones are compared. Included are myxobacterial species adapted to extreme biotopes. The efficiency of different methods used presently for isolation of myxobacteria is compared.
                Bookmark

                Author and book information

                Book Chapter
                2014
                November 20 2014
                : 191-212
                10.1007/978-3-642-39044-9_303
                bd232bdb-f829-4c67-87b1-1c174c427613
                History

                Comments

                Comment on this book

                Book chapters

                Similar content1,001

                Cited by3