Studies concerning the echolocation behaviour of odontocetes focus mainly on target detection and discrimination, either in stationary animals or in animals approaching a specific target. We present the first data on the use of echolocation for spatial orientation or navigation. Synchronised video and high-frequency recordings were made of two harbour porpoises trained to swim from one position to another across an outdoor pool in order to correlate swimming and echolocation behaviour. Both porpoises showed a clear range-locking behaviour on specific positions near the end of the pool, as indicated by a decrease in click interval with decreasing distance. The decrease in click interval followed the two-way-transit time, which is the time interval between the outgoing click and the received echo from the focal object. This suggests that the porpoises used focal objects as landmarks. The lag time, defined as the time between the arrival of an echo from a landmark and the emission of the next click, was task specific. The lag time was longer for difficult tasks (26-36 ms) and shorter for simpler tasks (14-19 ms), with some individual differences between the two animals. Our results suggest that echolocation by odontocetes is used not only for target detection, localisation and classification but also for spatial orientation.