6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Book Chapter: found
      Is Open Access
      Sustainability of Southern African Ecosystems under Global Change : Science for Management and Policy Interventions 

      Agricultural Land-Use Systems and Management Challenges

      other

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This chapter aims at providing an overview of the diversity of agroecological conditions, features of main farming systems, agricultural land use, its dynamics and drivers during the last two decades as well as major threats in ten countries of southern Africa (SA10). Based on this, we attempt to identify the resultant challenges for sustainable land management and outline potential interventions with a focus on smallholder farmers. By analyzing cropland dynamics during 2000–2019, we show how land use has been shaped by climate, demographic development, economic imperatives and policy realities. Concrete examples of these complex interactions illustrate both considerable shrinkage in South Africa and Zimbabwe or expansion of cropland in Mozambique and Zambia. During the past 20 years, cropland increased by 37% on average across SA10 mainly at the expense of forestland—showing huge spatiotemporal heterogeneity among countries. Most smallholders face shrinking farm size and other resource limitations that have resulted in soil nutrient mining and low agricultural productivity—a highly unsustainable situation. We conclude with an outlook on potential transformation pathways (“TechnoGarden” and “AdaptiveMosaic”) for the near future and thereby provide a frame for further studies on sustainable land management options under given local settings.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: not found
          • Article: not found

          Very high resolution interpolated climate surfaces for global land areas

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Food security: the challenge of feeding 9 billion people.

            Continuing population and consumption growth will mean that the global demand for food will increase for at least another 40 years. Growing competition for land, water, and energy, in addition to the overexploitation of fisheries, will affect our ability to produce food, as will the urgent requirement to reduce the impact of the food system on the environment. The effects of climate change are a further threat. But the world can produce more food and can ensure that it is used more efficiently and equitably. A multifaceted and linked global strategy is needed to ensure sustainable and equitable food security, different components of which are explored here.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global food demand and the sustainable intensification of agriculture.

              Global food demand is increasing rapidly, as are the environmental impacts of agricultural expansion. Here, we project global demand for crop production in 2050 and evaluate the environmental impacts of alternative ways that this demand might be met. We find that per capita demand for crops, when measured as caloric or protein content of all crops combined, has been a similarly increasing function of per capita real income since 1960. This relationship forecasts a 100-110% increase in global crop demand from 2005 to 2050. Quantitative assessments show that the environmental impacts of meeting this demand depend on how global agriculture expands. If current trends of greater agricultural intensification in richer nations and greater land clearing (extensification) in poorer nations were to continue, ~1 billion ha of land would be cleared globally by 2050, with CO(2)-C equivalent greenhouse gas emissions reaching ~3 Gt y(-1) and N use ~250 Mt y(-1) by then. In contrast, if 2050 crop demand was met by moderate intensification focused on existing croplands of underyielding nations, adaptation and transfer of high-yielding technologies to these croplands, and global technological improvements, our analyses forecast land clearing of only ~0.2 billion ha, greenhouse gas emissions of ~1 Gt y(-1), and global N use of ~225 Mt y(-1). Efficient management practices could substantially lower nitrogen use. Attainment of high yields on existing croplands of underyielding nations is of great importance if global crop demand is to be met with minimal environmental impacts.
                Bookmark

                Author and book information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Book Chapter
                2024
                January 06 2024
                : 551-586
                10.1007/978-3-031-10948-5_20
                ee09b388-a78a-45fe-a5ee-e056f650039f
                History

                Comments

                Comment on this book

                Book chapters

                Similar content395