13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found

      The Use of Positron Emission Tomography in Drug Discovery and Development

      other
      Springer-Verlag

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: not found
          • Article: not found

          MRI-PET Registration with Automated Algorithm

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-throughput screening in drug metabolism and pharmacokinetic support of drug discovery.

            R E White (2000)
            The application of rapid methods currently used for screening discovery drug candidates for metabolism and pharmacokinetic characteristics is discussed. General considerations are given for screening in this context, including the criteria for good screens, the use of counterscreens, the proper sequencing of screens, ambiguity in the interpretation of results, strategies for false positives and negatives, and the special difficulties encountered in drug metabolism and pharmacokinetic screening. Detailed descriptions of the present status of screening are provided for absorption potential, blood-brain barrier penetration, inhibition and induction of cytochrome P450, pharmacokinetics, biotransformation, and computer modeling. Although none of the systems currently employed for drug metabolism and pharmacokinetic screening can be considered truly high-throughput, several of them are rapid enough to be a practical part of the screening paradigm for modern, fast-moving discovery programs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comparative alterations of nicotinic and muscarinic binding sites in Alzheimer's and Parkinson's diseases.

              We have recently reported on the differential alterations of various cholinergic markers in cortical and subcortical regions in Alzheimer's disease (AD). The main purpose of the present study was to determine if cholinergic deficits observed in patients with AD are unique to this disorder or can be generalized to others such as idiopathic Parkinson's disease (PD) and PD with Alzheimer-type dementia (PD/AD). Muscarinic M1, M2, and nicotinic receptor binding parameters (KD and Bmax) were determined in various cortical and subcortical areas using selective radioligands ([3H]pirenzepine, [3H]AF-DX 116, and N[3H]methylcarbamylcholine). Choline acetyltransferase activity was also determined as a marker of the integrity of cholinergic innervation. Alterations of cholinergic markers are comparable in cortical areas in AD, PD, and PD/AD brains. In frontal and temporal cortices, as well as in the hippocampus, choline acetyltransferase activity and binding capacities of M2 and nicotinic binding sites are similarly decreased in these three disorders compared with age-matched control values. M1 receptor binding parameters are not significantly modified in cortical areas in patients with these disorders. In contrast, important differences between AD and PD brain tissues are found in subcortical areas such as the striatum and the thalamus. The density of M1 sites is significantly increased in striatal areas only in patients with AD, whereas densities of nicotinic sites are decreased in thalamus and striatum in PD and PD/AD, but not AD, brain tissues. The binding capacity of M2 sites is apparently unchanged in subcortical areas in all three disorders, although tendencies toward reductions are observed in the striatum of PD and PD/AD patients. Thus, although comparable alterations of various cholinergic markers are observed in cortical areas in the three neurological disorders investigated in the present study, important differences are seen in subcortical areas. This may be relevant to the respective etiological and clinical profiles of AD and PD.
                Bookmark

                Author and book information

                Book Chapter
                : 327-341
                10.1007/1-84628-007-9_17
                f432ba3b-e343-459c-adf5-b0a4a6529b1c
                History

                Comments

                Comment on this book

                Book chapters

                Similar content2,774