19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Biomimetics -- Materials, Structures and Processes : Examples, Ideas and Case Studies 

      Biomimetics in Tribology

      other
      , ,
      Springer Berlin Heidelberg

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references104

          • Record: found
          • Abstract: found
          • Article: not found

          Mussel-inspired surface chemistry for multifunctional coatings.

          We report a method to form multifunctional polymer coatings through simple dip-coating of objects in an aqueous solution of dopamine. Inspired by the composition of adhesive proteins in mussels, we used dopamine self-polymerization to form thin, surface-adherent polydopamine films onto a wide range of inorganic and organic materials, including noble metals, oxides, polymers, semiconductors, and ceramics. Secondary reactions can be used to create a variety of ad-layers, including self-assembled monolayers through deposition of long-chain molecular building blocks, metal films by electroless metallization, and bioinert and bioactive surfaces via grafting of macromolecules.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Nature’s hierarchical materials

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A reversible wet/dry adhesive inspired by mussels and geckos.

              The adhesive strategy of the gecko relies on foot pads composed of specialized keratinous foot-hairs called setae, which are subdivided into terminal spatulae of approximately 200 nm (ref. 1). Contact between the gecko foot and an opposing surface generates adhesive forces that are sufficient to allow the gecko to cling onto vertical and even inverted surfaces. Although strong, the adhesion is temporary, permitting rapid detachment and reattachment of the gecko foot during locomotion. Researchers have attempted to capture these properties of gecko adhesive in synthetic mimics with nanoscale surface features reminiscent of setae; however, maintenance of adhesive performance over many cycles has been elusive, and gecko adhesion is greatly diminished upon full immersion in water. Here we report a hybrid biologically inspired adhesive consisting of an array of nanofabricated polymer pillars coated with a thin layer of a synthetic polymer that mimics the wet adhesive proteins found in mussel holdfasts. Wet adhesion of the nanostructured polymer pillar arrays increased nearly 15-fold when coated with mussel-mimetic polymer. The system maintains its adhesive performance for over a thousand contact cycles in both dry and wet environments. This hybrid adhesive, which combines the salient design elements of both gecko and mussel adhesives, should be useful for reversible attachment to a variety of surfaces in any environment.
                Bookmark

                Author and book information

                Book Chapter
                2011
                June 20 2011
                : 25-49
                10.1007/978-3-642-11934-7_3
                fa0504bc-b2d7-4700-bfbd-042756928491
                History

                Comments

                Comment on this book

                Book chapters

                Similar content2,367