Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Computational Neurosurgery 

      Computational Fractal-Based Neurosurgery

      other
      , ,
      Springer Nature Switzerland

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain.

          The human brain is often considered to be the most cognitively capable among mammalian brains and to be much larger than expected for a mammal of our body size. Although the number of neurons is generally assumed to be a determinant of computational power, and despite the widespread quotes that the human brain contains 100 billion neurons and ten times more glial cells, the absolute number of neurons and glial cells in the human brain remains unknown. Here we determine these numbers by using the isotropic fractionator and compare them with the expected values for a human-sized primate. We find that the adult male human brain contains on average 86.1 +/- 8.1 billion NeuN-positive cells ("neurons") and 84.6 +/- 9.8 billion NeuN-negative ("nonneuronal") cells. With only 19% of all neurons located in the cerebral cortex, greater cortical size (representing 82% of total brain mass) in humans compared with other primates does not reflect an increased relative number of cortical neurons. The ratios between glial cells and neurons in the human brain structures are similar to those found in other primates, and their numbers of cells match those expected for a primate of human proportions. These findings challenge the common view that humans stand out from other primates in their brain composition and indicate that, with regard to numbers of neuronal and nonneuronal cells, the human brain is an isometrically scaled-up primate brain. (c) 2009 Wiley-Liss, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Adaptive reconfiguration of fractal small-world human brain functional networks.

            Brain function depends on adaptive self-organization of large-scale neural assemblies, but little is known about quantitative network parameters governing these processes in humans. Here, we describe the topology and synchronizability of frequency-specific brain functional networks using wavelet decomposition of magnetoencephalographic time series, followed by construction and analysis of undirected graphs. Magnetoencephalographic data were acquired from 22 subjects, half of whom performed a finger-tapping task, whereas the other half were studied at rest. We found that brain functional networks were characterized by small-world properties at all six wavelet scales considered, corresponding approximately to classical delta (low and high), , alpha, beta, and gamma frequency bands. Global topological parameters (path length, clustering) were conserved across scales, most consistently in the frequency range 2-37 Hz, implying a scale-invariant or fractal small-world organization. Dynamical analysis showed that networks were located close to the threshold of order/disorder transition in all frequency bands. The highest-frequency gamma network had greater synchronizability, greater clustering of connections, and shorter path length than networks in the scaling regime of (lower) frequencies. Behavioral state did not strongly influence global topology or synchronizability; however, motor task performance was associated with emergence of long-range connections in both beta and gamma networks. Long-range connectivity, e.g., between frontal and parietal cortex, at high frequencies during a motor task may facilitate sensorimotor binding. Human brain functional networks demonstrate a fractal small-world architecture that supports critical dynamics and task-related spatial reconfiguration while preserving global topological parameters.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Long-Term Storage Capacity of Reservoirs

              H E Hurst (1951)
                Bookmark

                Author and book information

                Book Chapter
                2024
                November 11 2024
                : 97-105
                10.1007/978-3-031-64892-2_6
                feb3edd6-df47-478e-9334-a1fa90b066e6
                History

                Comments

                Comment on this book