2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Minimal positional substring cover is a haplotype threading alternative to Li and Stephens model

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Li and Stephens (LS) hidden Markov model (HMM) models the process of reconstructing a haplotype as a mosaic copy of haplotypes in a reference panel. For small panels, the probabilistic parameterization of LS enables modeling the uncertainties of such mosaics. However, LS becomes inefficient when sample size is large, because of its linear time complexity. Recently the PBWT, an efficient data structure capturing the local haplotype matching among haplotypes, was proposed to offer a fast method for giving some optimal solution (Viterbi) to the LS HMM. Previously, we introduced the minimal positional substring cover (MPSC) problem as an alternative formulation of LS whose objective is to cover a query haplotype by a minimum number of segments from haplotypes in a reference panel. The MPSC formulation allows the generation of a haplotype threading in time constant to sample size ( O( N)). This allows haplotype threading on very large biobank-scale panels on which the LS model is infeasible. Here, we present new results on the solution space of the MPSC. In addition, we derived a number of optimal algorithms for MPSC, including solution enumerations, the length maximal MPSC, and h-MPSC solutions. In doing so, our algorithms reveal the solution space of LS for large panels. We show that our method is informative in terms of revealing the characteristics of biobank-scale data sets and can improve genotype imputation.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The UK Biobank resource with deep phenotyping and genomic data

          The UK Biobank project is a prospective cohort study with deep genetic and phenotypic data collected on approximately 500,000 individuals from across the United Kingdom, aged between 40 and 69 at recruitment. The open resource is unique in its size and scope. A rich variety of phenotypic and health-related information is available on each participant, including biological measurements, lifestyle indicators, biomarkers in blood and urine, and imaging of the body and brain. Follow-up information is provided by linking health and medical records. Genome-wide genotype data have been collected on all participants, providing many opportunities for the discovery of new genetic associations and the genetic bases of complex traits. Here we describe the centralized analysis of the genetic data, including genotype quality, properties of population structure and relatedness of the genetic data, and efficient phasing and genotype imputation that increases the number of testable variants to around 96 million. Classical allelic variation at 11 human leukocyte antigen genes was imputed, resulting in the recovery of signals with known associations between human leukocyte antigen alleles and many diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Next-generation genotype imputation service and methods.

            Genotype imputation is a key component of genetic association studies, where it increases power, facilitates meta-analysis, and aids interpretation of signals. Genotype imputation is computationally demanding and, with current tools, typically requires access to a high-performance computing cluster and to a reference panel of sequenced genomes. Here we describe improvements to imputation machinery that reduce computational requirements by more than an order of magnitude with no loss of accuracy in comparison to standard imputation tools. We also describe a new web-based service for imputation that facilitates access to new reference panels and greatly improves user experience and productivity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A One-Penny Imputed Genome from Next-Generation Reference Panels

              Genotype imputation is commonly performed in genome-wide association studies because it greatly increases the number of markers that can be tested for association with a trait. In general, one should perform genotype imputation using the largest reference panel that is available because the number of accurately imputed variants increases with reference panel size. However, one impediment to using larger reference panels is the increased computational cost of imputation. We present a new genotype imputation method, Beagle 5.0, which greatly reduces the computational cost of imputation from large reference panels. We compare Beagle 5.0 with Beagle 4.1, Impute4, Minimac3, and Minimac4 using 1000 Genomes Project data, Haplotype Reference Consortium data, and simulated data for 10k, 100k, 1M, and 10M reference samples. All methods produce nearly identical accuracy, but Beagle 5.0 has the lowest computation time and the best scaling of computation time with increasing reference panel size. For 10k, 100k, 1M, and 10M reference samples and 1,000 phased target samples, Beagle 5.0’s computation time is 3× (10k), 12× (100k), 43× (1M), and 533× (10M) faster than the fastest alternative method. Cost data from the Amazon Elastic Compute Cloud show that Beagle 5.0 can perform genome-wide imputation from 10M reference samples into 1,000 phased target samples at a cost of less than one US cent per sample.
                Bookmark

                Author and article information

                Journal
                Genome Res
                Genome Res
                genome
                GENOME
                Genome Research
                Cold Spring Harbor Laboratory Press
                1088-9051
                1549-5469
                July 2023
                : 33
                : 7
                : 1007-1014
                Affiliations
                [1 ]Department of Computer Science, University of Central Florida, Orlando, Florida 32816, USA;
                [2 ]Center for AI and Genome Informatics, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
                Author notes
                Author information
                http://orcid.org/0000-0001-7754-1890
                http://orcid.org/0000-0002-4051-5549
                Article
                9509184
                10.1101/gr.277673.123
                10538481
                37316352
                079241aa-18c0-4ba6-8009-1189c14c22bf
                © 2023 Sanaullah et al.; Published by Cold Spring Harbor Laboratory Press

                This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see https://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 6 January 2023
                : 6 June 2023
                Page count
                Pages: 8
                Funding
                Funded by: National Institutes of Health , doi 10.13039/100000002;
                Award ID: R01 HG010086
                Award ID: R56 HG011509
                Categories
                Methods

                Comments

                Comment on this article