12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inequalities in overweight and obesity among reproductive age group women in India: evidence from National Family Health Survey (2015–16)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          In developing nations like India, fertility and mortality have decreased, and diseases related to lifestyle have become more common. Females in India are more prone to being overweight and obese than their male counterparts, more specifically in affluent families than the poor ones. Understanding the overweight and obesity trend may help develop feasible public health interventions to reduce the burden of obesity and associated adverse health outcomes.

          Methods

          The study utilizes the fourth round of the National Family Health Survey (NFHS-4), 2015–16. Descriptive statistics, bivariate and multivariate analysis was used to check the significant relationship between overweight and obesity, and other background characteristics. Income-related inequality in overweight and obesity among women was quantified by the concentration index and the concentration curve. Further, Wagstaff decomposition analysis was done to decompose the concentration index, into the contributions of each factor to the income-related inequalities.

          Results

          Overweight & obesity among women had a significant positive association with their age and educational level. The odds of overweight and obesity were 57% more likely among women who ever had any caesarean births than those who did not [AOR: 1.57; CI: 1.53–1.62]. The likelihood of overweight and obesity was 4.31 times more likely among women who belonged to richest [AOR: 5.84; CI: 5.61–6.08] wealth quintile, than those who belonged to poor wealth quintile. Women who ever terminated the pregnancy had 20% higher risk of overweight and obesity than those who did not [AOR: 1.20; CI: 1.17–1.22]. The concentration of overweight and obesity among women was mostly in rich households of all the Indian states and union territories. Among the geographical regions of India, the highest inequality was witnessed in Eastern India (0.41), followed by Central India (0.36).

          Conclusion

          The study results also reveal a huge proportion of women belonging to the BMI categories of non-normal, which is a concern and can increase the risks of developing non-communicable diseases. Hence, the study concludes and recommends an urgent need of interventions catering to urban women belonging to higher socio-economic status which can reduce the risks of health consequences due to overweight and obesity. Development nutrition-specific as well as sensitive interventions can be done for mobilization of local resources that addresses the multiple issues under which a woman is overweight or obese.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants

          Summary Background Underweight and severe and morbid obesity are associated with highly elevated risks of adverse health outcomes. We estimated trends in mean body-mass index (BMI), which characterises its population distribution, and in the prevalences of a complete set of BMI categories for adults in all countries. Methods We analysed, with use of a consistent protocol, population-based studies that had measured height and weight in adults aged 18 years and older. We applied a Bayesian hierarchical model to these data to estimate trends from 1975 to 2014 in mean BMI and in the prevalences of BMI categories (<18·5 kg/m2 [underweight], 18·5 kg/m2 to <20 kg/m2, 20 kg/m2 to <25 kg/m2, 25 kg/m2 to <30 kg/m2, 30 kg/m2 to <35 kg/m2, 35 kg/m2 to <40 kg/m2, ≥40 kg/m2 [morbid obesity]), by sex in 200 countries and territories, organised in 21 regions. We calculated the posterior probability of meeting the target of halting by 2025 the rise in obesity at its 2010 levels, if post-2000 trends continue. Findings We used 1698 population-based data sources, with more than 19·2 million adult participants (9·9 million men and 9·3 million women) in 186 of 200 countries for which estimates were made. Global age-standardised mean BMI increased from 21·7 kg/m2 (95% credible interval 21·3–22·1) in 1975 to 24·2 kg/m2 (24·0–24·4) in 2014 in men, and from 22·1 kg/m2 (21·7–22·5) in 1975 to 24·4 kg/m2 (24·2–24·6) in 2014 in women. Regional mean BMIs in 2014 for men ranged from 21·4 kg/m2 in central Africa and south Asia to 29·2 kg/m2 (28·6–29·8) in Polynesia and Micronesia; for women the range was from 21·8 kg/m2 (21·4–22·3) in south Asia to 32·2 kg/m2 (31·5–32·8) in Polynesia and Micronesia. Over these four decades, age-standardised global prevalence of underweight decreased from 13·8% (10·5–17·4) to 8·8% (7·4–10·3) in men and from 14·6% (11·6–17·9) to 9·7% (8·3–11·1) in women. South Asia had the highest prevalence of underweight in 2014, 23·4% (17·8–29·2) in men and 24·0% (18·9–29·3) in women. Age-standardised prevalence of obesity increased from 3·2% (2·4–4·1) in 1975 to 10·8% (9·7–12·0) in 2014 in men, and from 6·4% (5·1–7·8) to 14·9% (13·6–16·1) in women. 2·3% (2·0–2·7) of the world’s men and 5·0% (4·4–5·6) of women were severely obese (ie, have BMI ≥35 kg/m2). Globally, prevalence of morbid obesity was 0·64% (0·46–0·86) in men and 1·6% (1·3–1·9) in women. Interpretation If post-2000 trends continue, the probability of meeting the global obesity target is virtually zero. Rather, if these trends continue, by 2025, global obesity prevalence will reach 18% in men and surpass 21% in women; severe obesity will surpass 6% in men and 9% in women. Nonetheless, underweight remains prevalent in the world’s poorest regions, especially in south Asia. Funding Wellcome Trust, Grand Challenges Canada.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents

            Summary Background Overweight and obesity are increasing worldwide. To help assess their relevance to mortality in different populations we conducted individual-participant data meta-analyses of prospective studies of body-mass index (BMI), limiting confounding and reverse causality by restricting analyses to never-smokers and excluding pre-existing disease and the first 5 years of follow-up. Methods Of 10 625 411 participants in Asia, Australia and New Zealand, Europe, and North America from 239 prospective studies (median follow-up 13·7 years, IQR 11·4–14·7), 3 951 455 people in 189 studies were never-smokers without chronic diseases at recruitment who survived 5 years, of whom 385 879 died. The primary analyses are of these deaths, and study, age, and sex adjusted hazard ratios (HRs), relative to BMI 22·5–<25·0 kg/m2. Findings All-cause mortality was minimal at 20·0–25·0 kg/m2 (HR 1·00, 95% CI 0·98–1·02 for BMI 20·0–<22·5 kg/m2; 1·00, 0·99–1·01 for BMI 22·5–<25·0 kg/m2), and increased significantly both just below this range (1·13, 1·09–1·17 for BMI 18·5–<20·0 kg/m2; 1·51, 1·43–1·59 for BMI 15·0–<18·5) and throughout the overweight range (1·07, 1·07–1·08 for BMI 25·0–<27·5 kg/m2; 1·20, 1·18–1·22 for BMI 27·5–<30·0 kg/m2). The HR for obesity grade 1 (BMI 30·0–<35·0 kg/m2) was 1·45, 95% CI 1·41–1·48; the HR for obesity grade 2 (35·0–<40·0 kg/m2) was 1·94, 1·87–2·01; and the HR for obesity grade 3 (40·0–<60·0 kg/m2) was 2·76, 2·60–2·92. For BMI over 25·0 kg/m2, mortality increased approximately log-linearly with BMI; the HR per 5 kg/m2 units higher BMI was 1·39 (1·34–1·43) in Europe, 1·29 (1·26–1·32) in North America, 1·39 (1·34–1·44) in east Asia, and 1·31 (1·27–1·35) in Australia and New Zealand. This HR per 5 kg/m2 units higher BMI (for BMI over 25 kg/m2) was greater in younger than older people (1·52, 95% CI 1·47–1·56, for BMI measured at 35–49 years vs 1·21, 1·17–1·25, for BMI measured at 70–89 years; pheterogeneity<0·0001), greater in men than women (1·51, 1·46–1·56, vs 1·30, 1·26–1·33; pheterogeneity<0·0001), but similar in studies with self-reported and measured BMI. Interpretation The associations of both overweight and obesity with higher all-cause mortality were broadly consistent in four continents. This finding supports strategies to combat the entire spectrum of excess adiposity in many populations. Funding UK Medical Research Council, British Heart Foundation, National Institute for Health Research, US National Institutes of Health.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Nations within a nation: variations in epidemiological transition across the states of India, 1990–2016 in the Global Burden of Disease Study

              Summary Background 18% of the world's population lives in India, and many states of India have populations similar to those of large countries. Action to effectively improve population health in India requires availability of reliable and comprehensive state-level estimates of disease burden and risk factors over time. Such comprehensive estimates have not been available so far for all major diseases and risk factors. Thus, we aimed to estimate the disease burden and risk factors in every state of India as part of the Global Burden of Disease (GBD) Study 2016. Methods Using all available data sources, the India State-level Disease Burden Initiative estimated burden (metrics were deaths, disability-adjusted life-years [DALYs], prevalence, incidence, and life expectancy) from 333 disease conditions and injuries and 84 risk factors for each state of India from 1990 to 2016 as part of GBD 2016. We divided the states of India into four epidemiological transition level (ETL) groups on the basis of the ratio of DALYs from communicable, maternal, neonatal, and nutritional diseases (CMNNDs) to those from non-communicable diseases (NCDs) and injuries combined in 2016. We assessed variations in the burden of diseases and risk factors between ETL state groups and between states to inform a more specific health-system response in the states and for India as a whole. Findings DALYs due to NCDs and injuries exceeded those due to CMNNDs in 2003 for India, but this transition had a range of 24 years for the four ETL state groups. The age-standardised DALY rate dropped by 36·2% in India from 1990 to 2016. The numbers of DALYs and DALY rates dropped substantially for most CMNNDs between 1990 and 2016 across all ETL groups, but rates of reduction for CMNNDs were slowest in the low ETL state group. By contrast, numbers of DALYs increased substantially for NCDs in all ETL state groups, and increased significantly for injuries in all ETL state groups except the highest. The all-age prevalence of most leading NCDs increased substantially in India from 1990 to 2016, and a modest decrease was recorded in the age-standardised NCD DALY rates. The major risk factors for NCDs, including high systolic blood pressure, high fasting plasma glucose, high total cholesterol, and high body-mass index, increased from 1990 to 2016, with generally higher levels in higher ETL states; ambient air pollution also increased and was highest in the low ETL group. The incidence rate of the leading causes of injuries also increased from 1990 to 2016. The five leading individual causes of DALYs in India in 2016 were ischaemic heart disease, chronic obstructive pulmonary disease, diarrhoeal diseases, lower respiratory infections, and cerebrovascular disease; and the five leading risk factors for DALYs in 2016 were child and maternal malnutrition, air pollution, dietary risks, high systolic blood pressure, and high fasting plasma glucose. Behind these broad trends many variations existed between the ETL state groups and between states within the ETL groups. Of the ten leading causes of disease burden in India in 2016, five causes had at least a five-times difference between the highest and lowest state-specific DALY rates for individual causes. Interpretation Per capita disease burden measured as DALY rate has dropped by about a third in India over the past 26 years. However, the magnitude and causes of disease burden and the risk factors vary greatly between the states. The change to dominance of NCDs and injuries over CMNNDs occurred about a quarter century apart in the four ETL state groups. Nevertheless, the burden of some of the leading CMNNDs continues to be very high, especially in the lowest ETL states. This comprehensive mapping of inequalities in disease burden and its causes across the states of India can be a crucial input for more specific health planning for each state as is envisioned by the Government of India's premier think tank, the National Institution for Transforming India, and the National Health Policy 2017. Funding Bill & Melinda Gates Foundation; Indian Council of Medical Research, Department of Health Research, Ministry of Health and Family Welfare, Government of India; and World Bank
                Bookmark

                Author and article information

                Contributors
                pradeepiips@yahoo.com
                sherry.mangla97@gmail.com
                sampurna34@gmail.com
                Journal
                BMC Womens Health
                BMC Womens Health
                BMC Women's Health
                BioMed Central (London )
                1472-6874
                2 June 2022
                2 June 2022
                2022
                : 22
                : 205
                Affiliations
                [1 ]GRID grid.419349.2, ISNI 0000 0001 0613 2600, International Institute of Population Sciences, ; Deonar, Mumbai, 400088 India
                [2 ]GRID grid.10706.30, ISNI 0000 0004 0498 924X, Centre of Social Medicine and Community Health, , Jawaharlal Nehru University, ; Delhi, 110067 India
                Author information
                http://orcid.org/0000-0002-6386-9040
                Article
                1786
                10.1186/s12905-022-01786-y
                9161460
                34986812
                0fc1ef1b-e981-4f4a-80a4-0c03ac5394d0
                © The Author(s) 2022

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 24 November 2021
                : 23 May 2022
                Categories
                Research
                Custom metadata
                © The Author(s) 2022

                Obstetrics & Gynecology
                overweight,obesity,inequalities,concentration index
                Obstetrics & Gynecology
                overweight, obesity, inequalities, concentration index

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content67

                Cited by5

                Most referenced authors755