26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identifying Precarious Settlements and Urban Fabric Typologies Based on GEOBIA and Data Mining in Brazilian Amazon Cities

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although 70% of the Amazon population lives in urban areas, studies on the urban Amazon are scarce. Much of the urban Amazon population lives in precarious settlements. The distinctiveness and diversity of Amazonian precarious settlements are vast and must be identified to be considered in the development of appropriate public policies. Aiming at investigating precarious settlements in Amazon, this study is guided by the following questions: For the Brazilian Amazon region, is it possible to identify areas of precarious settlements by combining geoprocessing and remote sensing techniques? Are there different typologies of precarious settlements distinguishable by their spatial arrangements? Thus, we developed a methodology for identifying precarious settlements and subsequently classifying them into urban fabric typologies (UFT), choosing the cities of Altamira, Cametá, and Marabá as study sites. Our classification model utilized geographic objects-based image analysis (GEOBIA) and data mining of spectral data from WPM sensor images from the CBERS-4A satellite, jointly with texture metrics, context metrics, biophysical index, voluntary geographical information, and neighborhood relationships. With the C5.0 decision tree algorithm we carried out variable selection and classification of these geographic objects. Our estimated models show accuracy above 90% when applied to the study sites. Additionally, we described Amazonian UFT in six types to be identified. We concluded that Amazonian precarious settlements are morphologically diverse, with an urban fabric different from those commonly found in Brazilian metropolitan areas. Identifying and characterizing distinct precarious areas is vital for the planning and development of sustainable and effective public policies for the urban Amazon.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          MEASURING ECONOMIC GROWTH FROM OUTER SPACE.

          GDP growth is often measured poorly for countries and rarely measured at all for cities or subnational regions. We propose a readily available proxy: satellite data on lights at night. We develop a statistical framework that uses lights growth to augment existing income growth measures, under the assumption that measurement error in using observed light as an indicator of income is uncorrelated with measurement error in national income accounts. For countries with good national income accounts data, information on growth of lights is of marginal value in estimating the true growth rate of income, while for countries with the worst national income accounts, the optimal estimate of true income growth is a composite with roughly equal weights. Among poor-data countries, our new estimate of average annual growth differs by as much as 3 percentage points from official data. Lights data also allow for measurement of income growth in sub- and supranational regions. As an application, we examine growth in Sub Saharan African regions over the last 17 years. We find that real incomes in non-coastal areas have grown faster by 1/3 of an annual percentage point than coastal areas; non-malarial areas have grown faster than malarial ones by 1/3 to 2/3 annual percent points; and primate city regions have grown no faster than hinterland areas. Such applications point toward a research program in which "empirical growth" need no longer be synonymous with "national income accounts."
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Statistical and structural approaches to texture

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              HAND, a new terrain descriptor using SRTM-DEM: Mapping terra-firme rainforest environments in Amazonia

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Remote Sensing
                Remote Sensing
                MDPI AG
                2072-4292
                February 2022
                February 02 2022
                : 14
                : 3
                : 704
                Article
                10.3390/rs14030704
                114b4d15-d606-4cba-8cb6-ec90b93e164b
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article