6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Selection of antibody and light exposure regimens alters therapeutic effects of EGFR-targeted near-infrared photoimmunotherapy

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer Cell-Selective In Vivo Near Infrared Photoimmunotherapy Targeting Specific Membrane Molecules

          Three major modes of cancer therapies, surgery, radiation and chemotherapy, have been the mainstay of modern oncologic therapy. To minimize side effects, molecular targeted cancer therapies including armed antibody therapy have been developed with limited success. In this study, we developed a new type of molecular targeted cancer therapy, photoimmunotherapy (PIT), employing a target-specific photosensitizer based on a near infrared (NIR) phthalocyanine dye, IR700, conjugated to monoclonal antibodies (MAb) targeting epidermal growth factor receptors (EGFR). Cell death was induced immediately only upon irradiating, MAb-IR700 bound, target cells with NIR light. In vivo tumor shrinkage after irradiation with NIR light was observed only in target EGFR-expressing cells. The MAb-IR700 conjugates were most effective when bound to the cell membrane, producing no phototoxicity when not bound, suggesting a different mechanism for PIT compared with conventional photodynamic therapies. Target selective PIT enables treatment of cancer based on MAb binding on the cell membrane.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nanodrug Delivery: Is the Enhanced Permeability and Retention Effect Sufficient for Curing Cancer?

            Nanotechnology offers several attractive design features that have prompted its exploration for cancer diagnosis and treatment. Nanosized drugs have a large loading capacity, the ability to protect the payload from degradation, a large surface on which to conjugate targeting ligands, and controlled or sustained release. Nanosized drugs also leak preferentially into tumor tissue through permeable tumor vessels and are then retained in the tumor bed due to reduced lymphatic drainage. This process is known as the enhanced permeability and retention (EPR) effect. However, while the EPR effect is widely held to improve delivery of nanodrugs to tumors, it in fact offers less than a 2-fold increase in nanodrug delivery compared with critical normal organs, resulting in drug concentrations that are not sufficient for curing most cancers. In this Review, we first overview various barriers for nanosized drug delivery with an emphasis on the capillary wall's resistance, the main obstacle to delivering drugs. Then, we discuss current regulatory issues facing nanomedicine. Finally, we discuss how to make the delivery of nanosized drugs to tumors more effective by building on the EPR effect.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Near-Infrared Photoimmunotherapy of Cancer

              Conspectus This Account is the first comprehensive review article on the newly developed, photochemistry-based cancer therapy near-infrared (NIR) photoimmunotherapy (PIT). NIR-PIT is a molecularly targeted phototherapy for cancer that is based on injecting a conjugate of a near-infrared, water-soluble, silicon-phthalocyanine derivative, IRdye700DX (IR700), and a monoclonal antibody (mAb) that targets an expressed antigen on the cancer cell surface. Subsequent local exposure to NIR light turns on this photochemical “death” switch, resulting in the rapid and highly selective immunogenic cell death (ICD) of targeted cancer cells. ICD occurs as early as 1 min after exposure to NIR light and results in irreversible morphologic changes only in target-expressing cells based on the newly discovered photoinduced ligand release reaction that induces physical changes on conjugated antibody/antigen complex resulting in functional damage on cell membrane. Meanwhile, immediately adjacent receptor-negative cells are totally unharmed. Because of its highly targeted nature, NIR-PIT carries few side effects and healing is rapid. Evaluation of the tumor microenvironment reveals that ICD induced by NIR-PIT results in rapid maturation of immature dendritic cells adjacent to dying cancer cells initiating a host anticancer immune response, resulting in repriming of polyclonal CD8+T cells against various released cancer antigens, which amplifies the therapeutic effect of NIR-PIT. NIR-PIT can target and treat virtually any cell surface antigens including cancer stem cell markers, that is, CD44 and CD133. A first-in-human phase 1/2 clinical trial of NIR-PIT using cetuximab-IR700 (RM1929) targeting EGFR in inoperable recurrent head and neck cancer patients successfully concluded in 2017 and led to “fast tracking” by the FDA and a phase 3 trial (https://clinicaltrials.gov/ct2/show/NCT03769506) that is currently underway in 3 countries in Asia, US/Canada, and 4 countries in EU. The next step for NIR-PIT is to further exploit the immune response. Preclinical research in animals with intact immune systems has shown that NIT-PIT targeting of immunosuppressor cells within the tumor, such as regulatory T-cells, can further enhance tumor-cell-selective systemic host-immunity leading to significant responses in distant metastatic tumors, which are not treated with light. By combining cancer-targeting NIR-PIT and immune-activating NIR-PIT or other cancer immunotherapies, NIR-PIT of a local tumor, could lead to responses in distant metastases and may also inhibit recurrences due to activation of systemic anticancer immunity and long-term immune memory without the systemic autoimmune adverse effects often associated with immune checkpoint inhibitors. Furthermore, NIR-PIT also enhances nanodrug delivery into tumors up to 24-fold superior to untreated tumors with conventional EPR effects by intensively damaging cancer cells behind tumor vessels. We conclude by describing future advances in this novel photochemical cancer therapy that are likely to further enhance the efficacy of NIR-PIT.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Cancer Immunology, Immunotherapy
                Cancer Immunol Immunother
                Springer Science and Business Media LLC
                0340-7004
                1432-0851
                August 2022
                January 11 2022
                August 2022
                : 71
                : 8
                : 1877-1887
                Article
                10.1007/s00262-021-03124-x
                35013765
                1913165b-dbf2-42bf-b9eb-2901ffe953a3
                © 2022

                https://www.springer.com/tdm

                https://www.springer.com/tdm

                History

                Comments

                Comment on this article