2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Enhanced magnetic anisotropy and Curie temperature of the NiI2 monolayer by applying strain: a first-principles study.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Two-dimensional (2D) intrinsic ferromagnetic semiconductors with high magnetic anisotropy (MA) and Curie temperature (TC) are desirable for low-dimensional spintronic applications. We present here the structural stability, MA and TC of the semiconducting NiI2 monolayer under strain from -4% to 4% using first-principles calculations. The unstrained NiI2 monolayer exhibits an in-plane magnetic anisotropy energy of -0.11 meV per unit cell and a TC of 79 K. Most noteworthily, the in-plane MA and TC of the NiI2 monolayer are simultaneously enhanced under compressive strain; meanwhile, the NiI2 monolayer is still stable. In particular, when the compressive strain reaches -4%, the in-plane MA is more than three times higher than that in the unstrained system. Based on the second-order perturbation theory of spin-orbit coupling, the density of states and the orbital magnetic anisotropy contributions are analyzed, indicating that the compressive strain effect originates from the increase of the negative contribution from the spin-orbit coupling interaction between the opposite spin py and px orbitals of the I atom. This study provides a promising route for exploring new 2D ferromagnetic semiconductors with higher MA and TC.

          Related collections

          Author and article information

          Journal
          Phys Chem Chem Phys
          Physical chemistry chemical physics : PCCP
          Royal Society of Chemistry (RSC)
          1463-9084
          1463-9076
          Dec 07 2020
          : 22
          : 46
          Affiliations
          [1 ] College of Physical Science and Technology, Bohai University, Jinzhou 121013, China. zhenghuiling@bhu.edu.cn.
          Article
          10.1039/d0cp03803b
          33205779
          1d80e561-2ac6-4a70-a4ef-d7ea5871738d
          History

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content300

          Cited by5