31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      How green is green chemistry? Chlorophylls as a bioresource from biorefineries and their commercial potential in medicine and photovoltaics

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chlorophylls are the natural green pigments par excellence and offer potential as therapeutics and in energy generation. This perspective outlines the state-of-the-art, their possible applications and indicates future directions in the context of green chemistry and their production from biorefineries.

          Abstract

          As the world strives to create a more sustainable environment, green chemistry has come to the fore in attempts to minimize the use of hazardous materials and shift the focus towards renewable sources. Chlorophylls, being the definitive “green” chemical are rarely used for such purposes and this article focuses on the exploitation of this natural resource, the current applications of chlorophylls and their derivatives whilst also providing a perspective on the commercial potential of large-scale isolation of these pigments from biomass for energy and medicinal applications.

          Related collections

          Most cited references140

          • Record: found
          • Abstract: found
          • Article: not found

          Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers.

          Dye-sensitized solar cells have gained widespread attention in recent years because of their low production costs, ease of fabrication and tunable optical properties, such as colour and transparency. Here, we report a molecularly engineered porphyrin dye, coded SM315, which features the prototypical structure of a donor-π-bridge-acceptor and both maximizes electrolyte compatibility and improves light-harvesting properties. Linear-response, time-dependent density functional theory was used to investigate the perturbations in the electronic structure that lead to improved light harvesting. Using SM315 with the cobalt(II/III) redox shuttle resulted in dye-sensitized solar cells that exhibit a high open-circuit voltage VOC of 0.91 V, short-circuit current density JSC of 18.1 mA cm(-2), fill factor of 0.78 and a power conversion efficiency of 13%.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Leaf senescence.

            Leaf senescence constitutes the final stage of leaf development and is critical for plants' fitness as nutrient relocation from leaves to reproducing seeds is achieved through this process. Leaf senescence involves a coordinated action at the cellular, tissue, organ, and organism levels under the control of a highly regulated genetic program. Major breakthroughs in the molecular understanding of leaf senescence were achieved through characterization of various senescence mutants and senescence-associated genes, which revealed the nature of regulatory factors and a highly complex molecular regulatory network underlying leaf senescence. The genetically identified regulatory factors include transcription regulators, receptors and signaling components for hormones and stress responses, and regulators of metabolism. Key issues still need to be elucidated, including cellular-level analysis of senescence-associated cell death, the mechanism of coordination among cellular-, organ-, and organism-level senescence, the integration mechanism of various senescence-affecting signals, and the nature and control of leaf age.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents.

              Optically active nanomaterials promise to advance a range of biophotonic techniques through nanoscale optical effects and integration of multiple imaging and therapeutic modalities. Here, we report the development of porphysomes; nanovesicles formed from self-assembled porphyrin bilayers that generated large, tunable extinction coefficients, structure-dependent fluorescence self-quenching and unique photothermal and photoacoustic properties. Porphysomes enabled the sensitive visualization of lymphatic systems using photoacoustic tomography. Near-infrared fluorescence generation could be restored on dissociation, creating opportunities for low-background fluorescence imaging. As a result of their organic nature, porphysomes were enzymatically biodegradable and induced minimal acute toxicity in mice with intravenous doses of 1,000 mg kg(-1). In a similar manner to liposomes, the large aqueous core of porphysomes could be passively or actively loaded. Following systemic administration, porphysomes accumulated in tumours of xenograft-bearing mice and laser irradiation induced photothermal tumour ablation. The optical properties and biocompatibility of porphysomes demonstrate the multimodal potential of organic nanoparticles for biophotonic imaging and therapy.
                Bookmark

                Author and article information

                Journal
                PPSHCB
                Photochemical & Photobiological Sciences
                Photochem. Photobiol. Sci.
                Royal Society of Chemistry (RSC)
                1474-905X
                1474-9092
                2015
                2015
                : 14
                : 4
                : 638-660
                Article
                10.1039/C4PP00435C
                1ed4d17e-a404-440c-a35f-17e2bdb00586
                © 2015
                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content178

                Cited by21

                Most referenced authors1,582