44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rice Routes of Countering Xanthomonas oryzae

      review-article
      , , *
      International Journal of Molecular Sciences
      MDPI
      rice, Xanthomonas oryzae, R genes, TALE, Xa1, iTALE

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bacterial blight (BB) and bacterial leaf streak (BLS), caused by Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola, respectively, are two devastating diseases in rice planting areas worldwide. It has been proven that adoption of rice resistance is the most effective, economic, and environment-friendly strategy to avoid yield loss caused by BB and BLS. As a model system for plant—pathogen interaction, the rice— X. oryzae pathosystem has been intensively investigated in the past decade. Abundant studies have shown that the resistance and susceptibility of rice to X. oryzae is determined by molecular interactions between rice genes or their products and various pathogen effectors. In this review, we briefly overviewed the literature regarding the diverse interactions, focusing on recent advances in uncovering mechanisms of rice resistance and X. oryzae virulence. Our analysis and discussions will not only be helpful for getting a better understanding of coevolution of the rice innate immunity and X. oryzae virulence, but it will also provide new insights for application of plant R genes in crop breeding.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Sugar transporters for intercellular exchange and nutrition of pathogens.

          Sugar efflux transporters are essential for the maintenance of animal blood glucose levels, plant nectar production, and plant seed and pollen development. Despite broad biological importance, the identity of sugar efflux transporters has remained elusive. Using optical glucose sensors, we identified a new class of sugar transporters, named SWEETs, and show that at least six out of seventeen Arabidopsis, two out of over twenty rice and two out of seven homologues in Caenorhabditis elegans, and the single copy human protein, mediate glucose transport. Arabidopsis SWEET8 is essential for pollen viability, and the rice homologues SWEET11 and SWEET14 are specifically exploited by bacterial pathogens for virulence by means of direct binding of a bacterial effector to the SWEET promoter. Bacterial symbionts and fungal and bacterial pathogens induce the expression of different SWEET genes, indicating that the sugar efflux function of SWEET transporters is probably targeted by pathogens and symbionts for nutritional gain. The metazoan homologues may be involved in sugar efflux from intestinal, liver, epididymis and mammary cells.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            High-efficiency TALEN-based gene editing produces disease-resistant rice.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Xanthomonas AvrBs3 family-type III effectors: discovery and function.

              Xanthomonads are bacterial plant pathogens that cause diseases on many plant species, including important crops. Key to pathogenicity of most Xanthomonas pathovars is a Hrp-type III secretion (T3S) system that translocates effector proteins into plant cells. Within the eukaryotic cell, the effectors are thought to perform a variety of tasks to support bacterial virulence, proliferation, and dissemination. We are only beginning to understand the host targets of different effectors. The largest effector family found in Xanthomonas spp. is the AvrBs3/PthA or TAL (transcription activator-like) family. TAL effectors act as transcriptional activators in the plant cell nucleus. Specificity of TAL effectors is determined by a novel modular DNA-binding domain. Here, we describe the discovery of TAL effectors and their structure, activity, and host targets.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                02 October 2018
                October 2018
                : 19
                : 10
                : 3008
                Affiliations
                National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agriculture Sciences (CAAS), Beijing 100081, China; jizhiyuan@ 123456caas.cn (Z.J.); wangchunlian@ 123456caas.cn (C.W.)
                Author notes
                [* ]Correspondence: zhaokaijun@ 123456caas.cn ; Tel.: +86-10-8210-5852; Fax: +86-10-8210-8751
                Article
                ijms-19-03008
                10.3390/ijms19103008
                6213470
                30279356
                1fef50eb-125c-40e1-bb97-2a69781c0aff
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 28 August 2018
                : 29 September 2018
                Categories
                Review

                Molecular biology
                rice,xanthomonas oryzae,r genes,tale,xa1,itale
                Molecular biology
                rice, xanthomonas oryzae, r genes, tale, xa1, itale

                Comments

                Comment on this article