Getting the message across, STAT! Design principles of a molecular signaling circuit – ScienceOpen
27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Getting the message across, STAT! Design principles of a molecular signaling circuit

      review-article
      The Journal of Cell Biology
      The Rockefeller University Press

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The STAT transcription factors, usually referred to as “latent cytoplasmic proteins,” have experienced a fundamental reevaluation of their dynamic properties. This review focuses on recent studies that have identified continuous transport factor–independent nucleocytoplasmic cycling of STAT1, STAT3, and STAT5 as a basic principle of cytokine signaling. In addition, molecular mechanisms that modulate flux rates or cause retention were recognized, and together these findings have provided novel insight into the rules of cellular signal processing.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of nucleocytoplasmic cycling as a remote sensor in cellular signaling by databased modeling.

          Considerable progress has been made in identifying the molecular composition of complex signaling networks controlling cell proliferation, differentiation, and survival. However, to discover general building principles and predict the dynamic behavior of signaling networks, it is necessary to develop quantitative models based on experimental observations. Here we report a mathematical model of the core module of the Janus family of kinases (JAK)-signal transducer and activator of transcription (STAT) signaling pathway based on time-resolved measurements of receptor and STAT5 phosphorylation. Applying the fitted model, we can determine the quantitative behavior of STAT5 populations not accessible to experimental measurement. By in silico investigations, we identify the parameters of nuclear shuttling as the most sensitive to perturbations and verify experimentally the model prediction that inhibition of nuclear export results in a reduced transcriptional yield. The model reveals that STAT5 undergoes rapid nucleocytoplasmic cycles, continuously coupling receptor activation and target gene transcription, thereby forming a remote sensor between nucleus and receptor. Thus, dynamic modeling of signaling pathways can promote functional understanding at the systems level.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            How Stat1 mediates constitutive gene expression: a complex of unphosphorylated Stat1 and IRF1 supports transcription of the LMP2 gene.

            Analysis of mRNA levels in cells that express or lack signal transducers and activators of transcription 1 (Stat1) reveals that Stat1 mediates the constitutive transcription of many genes. Expression of the low molecular mass polypeptide 2 (LMP2), which requires Stat1, has been studied in detail. The overlapping interferon consensus sequence 2/gamma-interferon-activated sequence (ICS-2/GAS) elements in the LMP2 promoter bind to interferon regulatory factor 1 (IRF1) and Stat1 and are occupied constitutively in vivo. The point mutant of Stat1, Y701F, which does not form dimers involving SH2-phosphotyrosine interactions, binds to the GAS element and supports LMP2 expression. Unphosphorylated Stat1 binds to IRF1 directly and we conclude that this complex uses the ICS-2/GAS element to mediate constitutive LMP2 transcription in vivo. The promoter of the IRF1 gene, which also contains a GAS site but not an adjacent ICS-2 site, is not activated by Stat1 Y701F. The promoters of other genes whose constitutive expression requires Stat1 may also utilize complexes of unphosphorylated Stat1 with IRF1 or other transcription factors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulated nuclear import of the STAT1 transcription factor by direct binding of importin-alpha.

              Signal transducers and activators of transcription (STATs) reside in a latent state in the cytoplasm of the cell, but accumulate in the nucleus in response to cytokines or growth factors. Localization in the nucleus occurs following STAT tyrosine phosphorylation and dimerization. In this report we demonstrate a direct interaction of importin-alpha5 with tyrosine-phosphorylated STAT1 dimers, and provide evidence that a nuclear localization signal (NLS) exists in an inactive state within a STAT1 monomer. A mutation in STAT1 leucine 407 (L407A) is characterized, which generates a protein that is accurately tyrosine phosphorylated in response to interferon, dimerizes and binds DNA, but does not localize to the nucleus. The import defect of STAT1(L407A) appears to be a consequence of the inability of this protein to be recognized by its import shuttling receptor. In addition, we demonstrate that STAT1 binding to specific target DNA effectively blocks importin-alpha5 binding. This result may play a role in localizing STAT1 to its destination in the nucleus, and in releasing importin-alpha5 from STAT1 for recycling back to the cytoplasm.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                25 October 2004
                : 167
                : 2
                : 197-201
                Affiliations
                Abteilung Zelluläre Signalverarbeitung, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Freie Universität Berlin, 13125 Berlin, Germany
                Author notes

                Correspondence to Uwe Vinkemeier: vinkemeier@ 123456fmp-berlin.de

                Article
                200407163
                10.1083/jcb.200407163
                2172545
                15504906
                22190028-a410-4380-948d-cde1a4eddb93
                Copyright © 2004, The Rockefeller University Press
                History
                : 26 July 2004
                : 30 August 2004
                Categories
                Reviews
                Mini-Review

                Cell biology
                Cell biology

                Comments

                Comment on this article

                scite_
                101
                4
                86
                0
                Smart Citations
                101
                4
                86
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content211

                Cited by28

                Most referenced authors771