9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      TRPV2: a universal regulator in cellular physiology with a yet poorly defined thermosensitivity

      review-article
      ,
      The Journal of Physiological Sciences : JPS
      BioMed Central
      Ion channel, Thermosensitivity, Heat, TRPV2, Physiology

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transient receptor potential (TRP) ion channels serve as sensors for variations in ambient temperature, modulating both thermoregulation and temperature responsive cellular processes. Among these, the vanilloid TRP subfamily (TRPV) comprises six members and at least four of these members (TRPV1-TRPV4) have been associated with thermal sensation. TRPV2 has been described as a sensor for noxious heat, but subsequent studies have unveiled a more complex role for TRPV2 beyond temperature perception. This comprehensive review aims to elucidate the intricate thermosensitivity of TRPV2 by synthesizing current knowledge on its biophysical properties, expression pattern and known physiological functions associated with thermosensation.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo.

          Microglial cells represent the immune system of the mammalian brain and therefore are critically involved in various injuries and diseases. Little is known about their role in the healthy brain and their immediate reaction to brain damage. By using in vivo two-photon imaging in neocortex, we found that microglial cells are highly active in their presumed resting state, continually surveying their microenvironment with extremely motile processes and protrusions. Furthermore, blood-brain barrier disruption provoked immediate and focal activation of microglia, switching their behavior from patroling to shielding of the injured site. Microglia thus are busy and vigilant housekeepers in the adult brain.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Impaired nociception and pain sensation in mice lacking the capsaicin receptor.

            The capsaicin (vanilloid) receptor VR1 is a cation channel expressed by primary sensory neurons of the "pain" pathway. Heterologously expressed VR1 can be activated by vanilloid compounds, protons, or heat (>43 degrees C), but whether this channel contributes to chemical or thermal sensitivity in vivo is not known. Here, we demonstrate that sensory neurons from mice lacking VR1 are severely deficient in their responses to each of these noxious stimuli. VR1-/- mice showed normal responses to noxious mechanical stimuli but exhibited no vanilloid-evoked pain behavior, were impaired in the detection of painful heat, and showed little thermal hypersensitivity in the setting of inflammation. Thus, VR1 is essential for selective modalities of pain sensation and for tissue injury-induced thermal hyperalgesia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microglia in Physiology and Disease.

              As the immune-competent cells of the brain, microglia play an increasingly important role in maintaining normal brain function. They invade the brain early in development, transform into a highly ramified phenotype, and constantly screen their environment. Microglia are activated by any type of pathologic event or change in brain homeostasis. This activation process is highly diverse and depends on the context and type of the stressor or pathology. Microglia can strongly influence the pathologic outcome or response to a stressor due to the release of a plethora of substances, including cytokines, chemokines, and growth factors. They are the professional phagocytes of the brain and help orchestrate the immunological response by interacting with infiltrating immune cells. We describe here the diversity of microglia phenotypes and their responses in health, aging, and disease. We also review the current literature about the impact of lifestyle on microglia responses and discuss treatment options that modulate microglial phenotypes.
                Bookmark

                Author and article information

                Contributors
                leffler.andreas@mh-hannover.de
                Journal
                J Physiol Sci
                J Physiol Sci
                The Journal of Physiological Sciences : JPS
                BioMed Central (London )
                1880-6546
                1880-6562
                16 September 2024
                16 September 2024
                2024
                : 74
                : 42
                Affiliations
                Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, ( https://ror.org/00f2yqf98) Carl-Neuberg Strasse 1, 30625 Hannover, Germany
                Author information
                http://orcid.org/0000-0003-1121-6387
                Article
                936
                10.1186/s12576-024-00936-1
                11403965
                39285320
                25161eba-0d3d-4165-9138-d94ba5536bdc
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 16 June 2024
                : 31 August 2024
                Categories
                Review
                Custom metadata
                © The Physiological Society of Japan 2024

                Anatomy & Physiology
                ion channel,thermosensitivity,heat,trpv2,physiology
                Anatomy & Physiology
                ion channel, thermosensitivity, heat, trpv2, physiology

                Comments

                Comment on this article