6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Classification of zirconium-rich engineered and natural nano particles using single particle ICP-TOFMS

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Measurement of zirconium-containing particles by single-particle ICP-TOFMS and classification of individual particles using a decision tree-based approach.

          Abstract

          Zirconium (Zr) is an important material in the field of ceramics, dentistry, and nuclear energy. It is also present in particulate form in our environment and can come from naturally occurring minerals such as zircon (ZrSiO 4) or from anthropogenic sources such as zirconia (ZrO 2). In this study, we present the detection and classification of Zr-particles at the individual particle level by using single-particle inductively coupled plasma time-of-flight mass spectrometry (spICP-TOFMS). Neat suspensions of engineered zirconia particles (Zr-eng) and natural zircon particles (Zr-nat) were analyzed by spICP-TOFMS, and a decision tree-based classification strategy was developed to distinguish the particle types based on their multi-elemental compositions. In both Zr-eng and Zr-nat particles, the only well-correlated element with Zr was hafnium (Hf), with Zr : Hf mass ratios converging to 47 : 1 and 75 : 1 for Zr-eng and Zr-nat, respectively. The detection of Hf along with Zr is indicative of both Zr-eng and Zr-nat particle types; however, the Zr : Hf mass ratios are too similar to be used to distinguish between individual nano- and sub-micron Zr-eng and Zr-nat particles. Instead, Zr-nat particles can be distinguished from Zr-eng particles based on the detection of minor-elements, such as iron, yttrium, lanthanum, cerium, and thorium, along with Hf in the Zr-nat particles. With our classification scheme, we demonstrate true-positive classification rates of 40% and 80% for Zr-eng and Zr-nat particle types, respectively. False-positive classification of Zr-nat as Zr-eng was below 2%. We validate our classification scheme by classifying the Zr-particles in controlled mixtures of Zr-nat and Zr-eng particles. In these mixtures, Zr-eng particles are classified at particle-number concentrations (PNCs) down to 49-times lower than that of Zr-nat particles and across a PNC range of 3 orders of magnitude.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: not found
          • Article: not found

          Atlas of Zircon Textures

          F. Corfu (2003)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Modeled environmental concentrations of engineered nanomaterials (TiO(2), ZnO, Ag, CNT, Fullerenes) for different regions.

            Engineered nanomaterials (ENM) are already used in many products and consequently released into environmental compartments. In this study, we calculated predicted environmental concentrations (PEC) based on a probabilistic material flow analysis from a life-cycle perspective of ENM-containing products. We modeled nano-TiO(2), nano-ZnO, nano-Ag, carbon nanotubes (CNT), and fullerenes for the U.S., Europe and Switzerland. The environmental concentrations were calculated as probabilistic density functions and were compared to data from ecotoxicological studies. The simulated modes (most frequent values) range from 0.003 ng L(-1) (fullerenes) to 21 ng L(-1) (nano-TiO(2)) for surface waters and from 4 ng L(-1) (fullerenes) to 4 microg L(-1) (nano-TiO(2)) for sewage treatment effluents. For Europe and the U.S., the annual increase of ENMs on sludge-treated soil ranges from 1 ng kg(-1) for fullerenes to 89 microg kg(-1) for nano-TiO(2). The results of this study indicate that risks to aquatic organisms may currently emanate from nano-Ag, nano-TiO(2), and nano-ZnO in sewage treatment effluents for all considered regions and for nano-Ag in surface waters. For the other environmental compartments for which ecotoxicological data were available, no risks to organisms are presently expected.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry.

              Currently there are few ideal methods for the characterization of nanoparticles in complex, environmental samples, leading to significant gaps in toxicity and exposure assessments of nanomaterials. Single particle-inductively coupled plasma-mass spectrometry (spICPMS) is an emerging technique that can both size and count metal-containing nanoparticles. A major benefit of the spICPMS method is its ability to characterize nanoparticles at concentrations relevant to the environment. This paper presents a practical guide on how to count and size nanoparticles using spICPMS. Different methods are investigated for measuring transport efficiency (i.e., nebulization efficiency), an important term in the spICPMS calculations. In addition, an alternative protocol is provided for determining particle size that broadens the applicability of the technique to all types of inorganic nanoparticles. Initial comparison, using well-characterized, monodisperse silver nanoparticles, showed the importance of having an accurate transport efficiency value when determining particle number concentration and, if using the newly presented protocol, particle size. Ultimately, the goal of this paper is to provide improvements to nanometrology by further developing this technique for the characterization of metal-containing nanoparticles.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                JASPE2
                Journal of Analytical Atomic Spectrometry
                J. Anal. At. Spectrom.
                Royal Society of Chemistry (RSC)
                0267-9477
                1364-5544
                June 05 2024
                2024
                : 39
                : 6
                : 1551-1559
                Affiliations
                [1 ]Department of Chemistry, Iowa State University, Ames, Iowa, USA
                Article
                10.1039/D4JA00094C
                2c09dc30-1761-42e5-a765-1e3078e3757e
                © 2024

                http://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article