10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Association of α-Dicarbonyls and Advanced Glycation End Products with Insulin Resistance in Non-Diabetic Young Subjects: A Case-Control Study

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          α-Dicarbonyls and advanced glycation end products (AGEs) may contribute to the pathogenesis of insulin resistance by a variety of mechanisms. To investigate whether young insulin-resistant subjects present markers of increased dicarbonyl stress, we determined serum α-dicarbonyls-methylglyoxal, glyoxal, 3-deoxyglucosone; their derived free- and protein-bound, and urinary AGEs using the UPLC/MS-MS method; soluble receptors for AGEs (sRAGE), and cardiometabolic risk markers in 142 (49% females) insulin resistant (Quantitative Insulin Sensitivity Check Index (QUICKI) ≤ 0.319) and 167 (47% females) age-, and waist-to-height ratio-matched insulin-sensitive controls aged 16-to-22 years. The between-group comparison was performed using the two-factor (sex, presence/absence of insulin resistance) analysis of variance; multiple regression via the orthogonal projection to latent structures model. In comparison with their insulin-sensitive peers, young healthy insulin-resistant individuals without diabetes manifest alterations throughout the α-dicarbonyls-AGEs-sRAGE axis, dominated by higher 3-deoxyglucosone levels. Variables of α-dicarbonyls-AGEs-sRAGE axis were associated with insulin sensitivity independently from cardiometabolic risk markers, and sex-specifically. Cleaved RAGE associates with QUICKI only in males; while multiple α-dicarbonyls and AGEs independently associate with QUICKI particularly in females, who displayed a more advantageous cardiometabolic profile compared with males. Further studies are needed to elucidate whether interventions alleviating dicarbonyl stress ameliorate insulin resistance.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans.

          Insulin resistance plays an important role in the pathophysiology of diabetes and is associated with obesity and other cardiovascular risk factors. The "gold standard" glucose clamp and minimal model analysis are two established methods for determining insulin sensitivity in vivo, but neither is easily implemented in large studies. Thus, it is of interest to develop a simple, accurate method for assessing insulin sensitivity that is useful for clinical investigations. We performed both hyperinsulinemic isoglycemic glucose clamp and insulin-modified frequently sampled iv glucose tolerance tests on 28 nonobese, 13 obese, and 15 type 2 diabetic subjects. We obtained correlations between indexes of insulin sensitivity from glucose clamp studies (SI(Clamp)) and minimal model analysis (SI(MM)) that were comparable to previous reports (r = 0.57). We performed a sensitivity analysis on our data and discovered that physiological steady state values [i.e. fasting insulin (I(0)) and glucose (G(0))] contain critical information about insulin sensitivity. We defined a quantitative insulin sensitivity check index (QUICKI = 1/[log(I(0)) + log(G(0))]) that has substantially better correlation with SI(Clamp) (r = 0.78) than the correlation we observed between SI(MM) and SI(Clamp). Moreover, we observed a comparable overall correlation between QUICKI and SI(Clamp) in a totally independent group of 21 obese and 14 nonobese subjects from another institution. We conclude that QUICKI is an index of insulin sensitivity obtained from a fasting blood sample that may be useful for clinical research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Insulin resistance (HOMA-IR) cut-off values and the metabolic syndrome in a general adult population: effect of gender and age: EPIRCE cross-sectional study

            Background Insulin resistance has been associated with metabolic and hemodynamic alterations and higher cardio metabolic risk. There is great variability in the threshold homeostasis model assessment of insulin resistance (HOMA-IR) levels to define insulin resistance. The purpose of this study was to describe the influence of age and gender in the estimation of HOMA-IR optimal cut-off values to identify subjects with higher cardio metabolic risk in a general adult population. Methods It included 2459 adults (range 20–92 years, 58.4% women) in a random Spanish population sample. As an accurate indicator of cardio metabolic risk, Metabolic Syndrome (MetS), both by International Diabetes Federation criteria and by Adult Treatment Panel III criteria, were used. The effect of age was analyzed in individuals with and without diabetes mellitus separately. ROC regression methodology was used to evaluate the effect of age on HOMA-IR performance in classifying cardio metabolic risk. Results In Spanish population the threshold value of HOMA-IR drops from 3.46 using 90th percentile criteria to 2.05 taking into account of MetS components. In non-diabetic women, but no in men, we found a significant non-linear effect of age on the accuracy of HOMA-IR. In non-diabetic men, the cut-off values were 1.85. All values are between 70th-75th percentiles of HOMA-IR levels in adult Spanish population. Conclusions The consideration of the cardio metabolic risk to establish the cut-off points of HOMA-IR, to define insulin resistance instead of using a percentile of the population distribution, would increase its clinical utility in identifying those patients in whom the presence of multiple metabolic risk factors imparts an increased metabolic and cardiovascular risk. The threshold levels must be modified by age in non-diabetic women.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Methylglyoxal, a highly reactive dicarbonyl compound, in diabetes, its vascular complications and other age-related diseases

              The formation and accumulation of methylglyoxal (MGO), a highly reactive dicarbonyl compound, has been implicated in the pathogenesis of type 2 diabetes, vascular complications of diabetes, and several other age-related chronic inflammatory diseases such as cardiovascular disease, cancer and disorders of the central nervous system. MGO is mainly formed as a byproduct of glycolysis and, under physiological circumstances, detoxified by the glyoxalase system. MGO is the major precursor of non-enzymatic glycation of proteins and DNA, subsequently leading to the formation of advanced glycation endproducts (AGEs). MGO and MGO-derived AGEs can impact on organs and tissues affecting their functions and structure. This review summarizes the mechanisms through which MGO is formed, its detoxification by the glyoxalase system, and its effect on biochemical pathways in relation to the development of diabetes, vascular complications of diabetes and other age-related diseases. Although therapies to treat MGO-associated complications are not yet available for application in clinical practice, several strategies to lower MGO have been developed over the years. We will summarize several new directions to target MGO stress including glyoxalase inducers and MGO scavengers. Diminishing MGO burden can potentially form the basis for new treatment strategies for age-related disorders in which MGO plays a pivotal role.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                NUTRHU
                Nutrients
                Nutrients
                MDPI AG
                2072-6643
                November 2022
                November 21 2022
                : 14
                : 22
                : 4929
                Article
                10.3390/nu14224929
                36432614
                3bcc756a-bee1-43ee-b85d-1c9d7d8dcad2
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article