In stereotactic radiotherapy, dose is prescribed to an isodose surrounding the planning target volume (PTV). However, the desired dose inhomogeneity inside the PTV leaves the specific dose distribution to the gross tumor volume (GTV) unspecified. A simultaneously integrated boost (SIB) to the GTV could solve this shortcoming. In a retrospective planning study with 20 unresected brain metastases, a SIB approach was tested against the classical prescription.
For all metastases, the GTV was isotropically enlarged by 3 mm to a PTV. Two plans were generated, one according to the classical 80% concept with 5 times 7 Gy prescribed (on D 2%) to the 80% PTV surrounding isodose (with D 98%(PTV) ≥ 35 Gy), and the other one following a SIB concept with 5 times 8.5 Gy average GTV dose and with D 98%(PTV) ≥ 35 Gy as additional requirement. Plan pairs were compared in terms of homogeneity inside GTV, high dose in PTV rim around GTV, and dose conformity and gradients around PTV using Wilcoxon matched pairs signed rank test.
The SIB concept was superior to the classical 80% concept concerning dose homogeneity inside GTV: Heterogeneity index of GTV was in the SIB concept (median 0.0513, range 0.0397–0.0757) significantly (p = 0.001) lower than in the 80% concept (median 0.0894, range 0.0447–0.1872). Dose gradients around PTV were not inferior. The other examined measures were comparable.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.