28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Screening Reliable Reference Genes for RT-qPCR Analysis of Gene Expression in Moringa oleifera

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Moringa oleifera is a promising plant species for oil and forage, but its genetic improvement is limited. Our current breeding program in this species focuses on exploiting the functional genes associated with important agronomical traits. Here, we screened reliable reference genes for accurately quantifying the expression of target genes using the technique of real-time quantitative polymerase chain reaction (RT-qPCR) in M. oleifera. Eighteen candidate reference genes were selected from a transcriptome database, and their expression stabilities were examined in 90 samples collected from the pods in different developmental stages, various tissues, and the roots and leaves under different conditions (low or high temperature, sodium chloride (NaCl)- or polyethyleneglycol (PEG)- simulated water stress). Analyses with geNorm, NormFinder and BestKeeper algorithms revealed that the reliable reference genes differed across sample designs and that ribosomal protein L1 ( RPL1) and acyl carrier protein 2 ( ACP2) were the most suitable reference genes in all tested samples. The experiment results demonstrated the significance of using the properly validated reference genes and suggested the use of more than one reference gene to achieve reliable expression profiles. In addition, we applied three isotypes of the superoxide dismutase ( SOD) gene that are associated with plant adaptation to abiotic stress to confirm the efficacy of the validated reference genes under NaCl and PEG water stresses. Our results provide a valuable reference for future studies on identifying important functional genes from their transcriptional expressions via RT-qPCR technique in M. oleifera.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress.

          Plant stress studies are more and more based on gene expression. The analysis of gene expression requires sensitive, precise, and reproducible measurements for specific mRNA sequences. Real-time RT-PCR is at present the most sensitive method for the detection of low abundance mRNA. To avoid bias, real-time RT-PCR is referred to one or several internal control genes, which should not fluctuate during treatments. Here, the non-regulation of seven housekeeping genes (beta-tubulin, cyclophilin, actin, elongation factor 1-alpha (ef1alpha), 18S rRNA, adenine phosphoribosyl transferase (aprt), and cytoplasmic ribosomal protein L2) during biotic (late blight) and abiotic stresses (cold and salt stress) was tested on potato plants using geNorm software. Results from the three experimental conditions indicated that ef1alpha was the most stable among the seven tested. The expression of the other housekeeping genes tested varied upon stress. In parallel, a study of the variability of expression of hsp20.2, shown to be implicated in late blight stress, was realized. The relative quantification of the hsp20.2 gene varied according to the internal control and the number of internal controls used, thus highlighting the importance of the choice of internal controls in such experiments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Validation of housekeeping genes for normalizing RNA expression in real-time PCR.

            Analysis of RNA expression using techniques like real-time PCR has traditionally used reference or housekeeping genes to control for error between samples. This practice is being questioned as it becomes increasingly clear that some housekeeping genes may vary considerably in certain biological samples. We used real-time reverse transcription PCR (RT-PCR) to assess the levels of 13 housekeeping genes expressed in peripheral blood mononuclear cell culture and whole blood from healthy individuals and those with tuberculosis. Housekeeping genes were selected from conventionally used ones and from genes reported to be invariant in human T cell culture. None of the commonly used housekeeping genes [e.g., glyceraldehyde-phosphate-dehydrogenase (GAPDH)] were found to be suitable as internal references, as they were highly variable (>30-fold maximal variability). Furthermore, genes previously found to be invariant in human T cell culture also showed large variation in RNA expression (>34-fold maximal variability). Genes that were invariant in blood were highly variable in peripheral blood mononuclear cell culture. Our data show that RNA specifying human acidic ribosomal protein was the most suitable housekeeping gene for normalizing mRNA levels in human pulmonary tuberculosis. Validations of housekeeping genes are highly specific for a particular experimental model and are a crucial component in assessing any new model.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants.

              Reverse transcription-polymerase chain reaction (RT-PCR) approaches have been used in a large proportion of transcriptome analyses published to date. The accuracy of the results obtained by this method strongly depends on accurate transcript normalization using stably expressed genes, known as references. Statistical algorithms have been developed recently to help validate reference genes, and most studies of gene expression in mammals, yeast and bacteria now include such validation. Surprisingly, this important approach is under-utilized in plant studies, where putative housekeeping genes tend to be used as references without any appropriate validation. Using quantitative RT-PCR, the expression stability of several genes commonly used as references was tested in various tissues of Arabidopsis thaliana and hybrid aspen (Populus tremula x Populus tremuloides). It was found that the expression of most of these genes was unstable, indicating that their use as references is inappropriate. The major impact of the use of such inappropriate references on the results obtained by RT-PCR is demonstrated in this study. Using aspen as a model, evidence is presented indicating that no gene can act as a universal reference, implying the need for a systematic validation of reference genes. For the first time, the extent to which the lack of a systematic validation of reference genes is a stumbling block to the reliability of results obtained by RT-PCR in plants is clearly shown.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                19 August 2016
                2016
                : 11
                : 8
                : e0159458
                Affiliations
                [1 ]State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangdong, 510642, China
                [2 ]Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangdong, 510642, China
                [3 ]Guangdong Province Research Center of Woody Forage Engineering Technology, South China Agricultural University, Guangdong, 510642, China
                [4 ]College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
                Hainan University, CHINA
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: XYC LTD KXOY. Performed the experiments: LTD YLW JCL KXOY MMD JJZ SQL MFL HBC. Analyzed the data: LTD. Wrote the paper: LTD XSH XYC.

                Article
                PONE-D-16-14914
                10.1371/journal.pone.0159458
                4991797
                27541138
                51238bde-992f-4a6a-bc5e-507d92d1e520
                © 2016 Deng et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 12 April 2016
                : 1 July 2016
                Page count
                Figures: 6, Tables: 4, Pages: 18
                Funding
                Funded by: by the Forestry Sciences and Technology Innovation Project in Guangdong Province
                Award ID: 2015KJCX009
                Award Recipient :
                Funded by: the Department of Tropical crops, State Bureau for Land-Reclamation
                Award ID: 15RZNJ-62
                Award Recipient :
                This work was supported by the Forestry Sciences and Technology Innovation Project in Guangdong Province (2015KJCX009) and the Department of Tropical crops, State Bureau for Land-Reclamation (15RZNJ-62), P.R. China. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Genetics
                Gene Expression
                Biology and Life Sciences
                Biochemistry
                Enzymology
                Enzymes
                Dismutases
                Superoxide Dismutase
                Biology and Life Sciences
                Biochemistry
                Proteins
                Enzymes
                Dismutases
                Superoxide Dismutase
                Medicine and Health Sciences
                Diagnostic Medicine
                Signs and Symptoms
                Hyperthermia
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Signs and Symptoms
                Hyperthermia
                Physical Sciences
                Mathematics
                Applied Mathematics
                Algorithms
                Research and Analysis Methods
                Simulation and Modeling
                Algorithms
                Research and analysis methods
                Chemical synthesis
                Biosynthetic techniques
                Nucleic acid synthesis
                RNA synthesis
                Biology and life sciences
                Biochemistry
                Nucleic acids
                RNA
                RNA synthesis
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Artificial Gene Amplification and Extension
                Polymerase Chain Reaction
                Research and Analysis Methods
                Molecular Biology Techniques
                Artificial Gene Amplification and Extension
                Polymerase Chain Reaction
                Biology and Life Sciences
                Computational Biology
                Genome Analysis
                Transcriptome Analysis
                Biology and Life Sciences
                Genetics
                Genomics
                Genome Analysis
                Transcriptome Analysis
                Biology and Life Sciences
                Plant Science
                Plant Anatomy
                Leaves
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content1,097

                Cited by9

                Most referenced authors939