13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Evidence of feminization in seahorses from a tropical estuary

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: not found
          • Article: not found

          Observational Study of Behavior: Sampling Methods

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Temperature-Dependent Sex Determination in Fish Revisited: Prevalence, a Single Sex Ratio Response Pattern, and Possible Effects of Climate Change

            Background In gonochoristic vertebrates, sex determination mechanisms can be classified as genotypic (GSD) or temperature-dependent (TSD). Some cases of TSD in fish have been questioned, but the prevalent view is that TSD is very common in this group of animals, with three different response patterns to temperature. Methodology/Principal Findings We analyzed field and laboratory data for the 59 fish species where TSD has been explicitly or implicitly claimed so far. For each species, we compiled data on the presence or absence of sex chromosomes and determined if the sex ratio response was obtained within temperatures that the species experiences in the wild. If so, we studied whether this response was statistically significant. We found evidence that many cases of observed sex ratio shifts in response to temperature reveal thermal alterations of an otherwise predominately GSD mechanism rather than the presence of TSD. We also show that in those fish species that actually have TSD, sex ratio response to increasing temperatures invariably results in highly male-biased sex ratios, and that even small changes of just 1–2°C can significantly alter the sex ratio from 1∶1 (males∶females) up to 3∶1 in both freshwater and marine species. Conclusions/Significance We demonstrate that TSD in fish is far less widespread than currently believed, suggesting that TSD is clearly the exception in fish sex determination. Further, species with TSD exhibit only one general sex ratio response pattern to temperature. However, the viability of some fish populations with TSD can be compromised through alterations in their sex ratios as a response to temperature fluctuations of the magnitude predicted by climate change.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Male pregnancy in seahorses and pipefish: beyond the mammalian model.

              Pregnancy has been traditionally defined as the period during which developing embryos are incubated in the body after egg-sperm union. Despite strong similarities between viviparity in mammals and other vertebrate groups, researchers have historically been reluctant to use the term pregnancy for non-mammals in recognition of the highly developed form of viviparity in eutherians. Syngnathid fishes (seahorses and pipefishes) have a unique reproductive system, where the male incubates developing embryos in a specialized brooding structure in which they are aerated, osmoregulated, protected and likely provisioned during their development. Recent insights into physiological, morphological and genetic changes associated with syngnathid reproduction provide compelling evidence that male incubation in these species is a highly specialized form of reproduction akin to other forms of viviparity. Here, we review these recent advances, highlighting similarities and differences between seahorse and mammalian pregnancy. Understanding the changes associated with the parallel evolution of male pregnancy in the two major syngnathid lineages will help to identify key innovations that facilitated the development of this unique form of reproduction and, through comparison with other forms of live bearing, may allow the identification of a common set of characteristics shared by all viviparous organisms.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Journal of Fish Biology
                J Fish Biol
                Wiley
                0022-1112
                1095-8649
                August 2021
                May 02 2021
                August 2021
                : 99
                : 2
                : 695-699
                Affiliations
                [1 ]Laboratory of Animal Behavior and Conservation Universidade Santa Úrsula Rio de Janeiro Brazil
                [2 ]Graduate Course in Ecology and Evolution (PPGEE) Universidade do Estado do Rio de Janeiro (UERJ) Rio de Janeiro Brazil
                Article
                10.1111/jfb.14759
                5446fc7e-b409-48ce-95e5-a0ce0f5c5228
                © 2021

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article