5,357
views
0
recommends
+1 Recommend
2 collections
    3
    shares

      UCL Press journals including Archaeology Internation have now moved website.

      You will now find the journal, all publications and submission information, at https://journals.uclpress.co.uk/ai

      scite_
       
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Iso-Wetlands: unlocking wetland ecologies and agriculture in prehistory through sulfur isotopes

      research-article
      Bookmark

            Abstract

            Iso-Wetlands is a new, NERC-funded collaborative research project involving researchers at UCL Institute of Archaeology, the University of Leeds and the UK Centre for Ecology and Hydrology. The project is developing sulfur isotope analysis of archaeological plants and animals as a new tool for exploring hydrological conditions under which agricultural production was taking place. This development has the potential to improve understanding of water management strategies in the past, particularly in relation to seasonal floodwater agriculture and wetland agriculture (for example, rice paddy systems). The project will open wider possibilities for the use of sulfur isotopes in archaeology and ecology to examine wetland habitat use by both people and animals.

            Main article text

            Introduction

            Since the advent of farming, water has been central to agricultural production, yet the use of natural and manipulated water resources in prehistoric agriculture is poorly understood. The selective distribution of Neolithic settlements in the Near East and Europe along rivers and floodplains was long argued as evidence for a dependence on floodplain cultivation (Sherratt 1980; Bogaard 2005). However, a more complex picture has since emerged, with evidence for both ‘least-effort’ floodplain cultivation, more labour-intensive garden cultivation and artificial manipulation of soil fertility and water taking place (Cappers and Raemaekers 2008; Bogaard 2004). The manipulation of water systems by early farmers to ensure crop productivity and to mitigate against the effect of environmental unpredictability led to agricultural surpluses that are argued to have underpinned the development of complex societies, particularly in Asia (Finlayson et al. 2011; Flohr et al. 2019). However, such developments came at a price, with anthropogenic manipulation of water systems leading to significant environmental consequences such as loss of biodiversity, disruption of sedimentation cycles and increased atmospheric methane emissions (Robinson and Lambrick 1984; Erickson 1992; Marston 2017; Fuller et al. 2011).

            Despite human use of past natural and managed wetland environments being central to many important archaeological, environmental and climatological questions, methods for studying past water management regimes and agricultural strategies often solely rely on indirect evidence – such as irrigation infrastructure and weed ecology – or focus exclusively on water availability in arid environments (for example, cereal grain carbon isotopes) rather than wetland contexts (Styring et al. 2016; Wallace et al. 2013). These methods do not enable water conditions to be adequately inferred, limiting investigations and interpretations to a coarse resolution. There is thus a need for a new methodology that can provide more direct information on past soil hydrology; this in turn will lead to a step-change in the understanding of prehistoric agriculture and the use of natural and manipulated water resources. The Iso-Wetlands project is exploring the potential of sulfur isotopes of archaeological plant and animal remains as a new tool for establishing the hydrological conditions under which agricultural production was taking place.

            Sulfur isotopes in archaeology

            Since the start of the twenty-first century sulfur isotope ratios (δ34S) in archaeological plant, human and animal remains have been increasingly used to explore past diets and ancient human and animal mobility (Richards et al. 2003; Nehlich 2015). The majority of these investigations use sulfur isotopes to track movements or make geographical assignments (Nehlich 2015). This is possible as animal sulfur isotopes reflect those of the bioavailable sulfur (usually soil sulphate) at the base of their food chain. Bioavailable sulfur varies spatially, with isotope values being determined by underlying bedrock (Krouse 1980) and proximity to the ocean (due to sea spray) (Zazzo et al. 2011; Bataille et al. 2020; Guiry and Szpak 2020). Further studies use sulfur isotopes for a dietary or palaeodietary indicator, as marine and terrestrial resources have relatively distinct δ34S values (Richards et al. 2003). Animal and human δ34S values have thus been interpreted as reflecting one or more dietary sources, but these sources were assumed to not be influenced by environmental parameters.

            However, this over-simplistic view is now beginning to be challenged. Research has started to indicate that environmental parameters can influence soil and plant δ34S values to the extent that environmental conditions can sometimes be the primary driver of plant – and therefore animal – δ34S values. Environmental parameters (for example, soil hydrology) that promote changes in soil microbial action and soil redox status seem to be of particular importance. In aerobic conditions (free draining soils) plants primarily reflect sulphate δ34S derived from mineral weathering of parent material with little or no fractionation (Trust and Fry 1992). When anaerobic conditions prevail (for example, when there is extensive wetting and waterlogging of landscapes), however, soil redox is affected and microbially mediated dissimilatory sulphate reduction (DSR) occurs. This process can result in large (−46 to −40‰) isotopic fractionation between the different soil S pool available to plants (Thode 1991). Plants rooted in anaerobic soils have been shown to access depleted δ34S sulphides either directly (if they are adapted to transport oxygen to their roots or are tolerant to sulphide toxicity) or indirectly after oxidisation to sulphate (Nitsch et al. 2019).

            Evidence for such processes driving plant and animal δ34S values is beginning to emerge in modern datasets. Low δ34S values have been observed in birds from wetland habitats in North America, where they have been linked to high soil sulphide concentrations and DSR processes (Hebert and Wassenaar 2005). Likewise, within Britain lower plant δ34S values occur in regions where the underlying geology promotes water retention in soils (for example, Jurassic clays), again suggesting that wetter soil conditions promote fractionation processes which produce pools of low δ34S sulfur accessible to vegetation (Evans et al. 2018; Chenery 2018; Lamb et al. 2022). Low herbivore bone collagen δ34S values are observed in wetland regions of Britain where low plant δ34S sulfur has been reported (Somerset Levels, Cambridgeshire Fens) (Lamb et al. 2022). A correlation between plant δ34S (barley, wheat, wild grasses) and local waterlogging has been observed on the Konya Plain, Turkey, with those from areas subject to flooding having lower δ34S than those from non-flooded contexts (Nitsch et al. 2019). Similarly, low δ34S values appear to be associated with paddy field agriculture. Particularly low δ34S values have been observed in rice from regions where agricultural water management practices promote DSR (Chung et al. 2018), while plants grown in recently converted paddy fields, where repeated soil oxidation and reduction processes have occurred, were also found to have lower δ34S values than the same plants grown in dry upland soils (Chung et al. 2017).

            In the archaeological and palaeontological record, low (often negative) δ34S values and temporal variability in δ34S values are also evident. In Wales, Switzerland and the Czech Republic changes in herbivore δ34S values during and at the end of the Last Glacial Maximum are argued to reflect locally variable hydrological dynamics linked to permafrost thaw (Reade et al. 2020, 2021; Stevens et al. 2021). Low faunal δ34S values have also been identified in more recent Holocene archaeological assemblages. At a Roman site in the Thames Valley, low faunal δ34S values appear to relate to riverine floodplain use (Nehlich et al. 2011), while a trend towards higher δ34S values may relate to changes in the Thames palaeochannel from the early Holocene to recent times (Arthur 2022). Low faunal δ34S values have been reported from Bronze Age, Roman and medieval sites in the wetland areas of the Somerset Levels and Cambridgeshire Fens (Lamb et al. 2022). Low human δ34S values at the Mayan archaeological sites of Xunantunich and San Lorenzo in Belize have been postulated to be due to the consumption of maize cultivated on the floodplains of the Mopan River (Rand 2021).

            In short, this evidence illuminates the challenges and potential pitfalls of using sulfur isotope data as a simple provenancing tool. Temporal and/or local-scale spatial variability in soil hydrology may over-print larger-scale spatial variation related to lithology or proximity to the coast/sources of isotopically distinct pollutants. While complicating the interpretation of sulfur isotope analysis for provenance studies and dietary reconstruction, this presents an emerging opportunity to develop sulfur isotopes as a proxy for hydrological conditions, which can then be used in both modern and archaeological investigations.

            Iso-Wetlands project

            The Iso-Wetlands project is investigating and quantifying the relationship between water availability, the soil environment (soil sulphate concentration, soil microbial community structure and redox status) and plant δ34S using controlled growth experiments. This is necessary as we need to establish when and to what extent sulfur isotopes are impacted by hydrology before we can apply the proxy to archaeological case studies. We are growing a range of plant species in the UK Centre for Ecology and Hydrology’s GroDome. The GroDome enables plants to be grown under strictly controlled experimental conditions, allowing the effect of different growth regimes on plant δ34S to be tested and avoiding S input to the experiment from modern anthropogenic pollutants. We are in the first year of our experiments, so it will be some time before we can harvest our plants and sample the soils for isotope analysis. However, the results will inform interpretations in our archaeological case studies that explore floodplain agriculture and the development of wet-rice agricultural systems.

            Funding

            Research funding was provided by the Natural Environment Research Council (NE/W000792/1).

            Declarations and conflicts of interest

            Research ethics statement

            Not applicable to this article.

            Consent for publication statement

            Not applicable to this article.

            Conflicts of interest statement

            The authors declare no conflict of interest with this work. All efforts to sufficiently anonymise the authors during peer review of this article have been made. The authors declare no further conflicts with this article.

            References

            1. Arthur Nichola Alice. 2022. Archaeological human remains from the River Thames and its London deposits. PhD thesis. UCL. https://discovery.ucl.ac.uk/id/eprint/10141854/

            2. Bataille Clement P, Chartrand Michelle M. G, Raposo Francis, St-Jean Gilles. 2020. Assessing geographic controls of hair isotopic variability in human populations: A case-study in Canada. PLoS One. Vol. 15(8):e0237105. [Cross Ref]

            3. Bogaard Amy. 2004. Neolithic Farming in Central Europe: An archaeobotanical study of crop husbandry practices. London: Routledge.

            4. Bogaard Amy. 2005. “Garden agriculture” and the nature of early farming in Europe and the Near East. World Archaeology. Vol. 37(2):177–96. [Cross Ref]

            5. Cappers RTJ, Raemaekers DCM. 2008. Cereal cultivation at Swifterbant? Neolithic wetland farming on the North European Plain. Current Anthropology. Vol. 49(3):385–402. [Cross Ref]

            6. Chenery Carolyn. 2018. Biosphere isotope domain map GB (V1): Sulphur isotope data. British Geological Survey. [Cross Ref]

            7. Chung Ill-Min, Lee Taek-Jun, Oh Yong-Taek, Ghimire Bimal Kumar, Jang In-Bae, Kim Seung-Hyun. 2017. Ginseng authenticity testing by measuring carbon, nitrogen and sulfur stable isotope compositions that differ based on cultivation land and organic fertilizer type. Journal of Ginseng Research. Vol. 41(2):195–200. [Cross Ref]

            8. Chung Ill-Min, Kim Jae-Kwang, Lee Kyoung-Jin, Park Sung-Kyu, Lee Ji-Hee, Son Na-Young, Jin Yong-Ik, Kim Seung-Hyun. 2018. Geographic authentication of Asian rice (Oryza sativa L.) using multi-elemental and stable isotopic data combined with multivariate analysis. Food Chemistry. Vol. 240:840–9. [Cross Ref]

            9. Erickson Clark L. 1992. Prehistoric landscape management in the Andean highlands: Raised field agriculture and its environmental impact. Population and Environment. Vol. 13:285–300. [Cross Ref]

            10. Evans JA, Mee K, Chenery CA, Cartwright CE, Lee KA, Marchant AP. 2018. User guide for the biosphere isotope domains GB (V1): Interactive website. British Geological Survey. [Cross Ref]

            11. Finlayson Bill, Lovell Jaimie, Smith Sam, Mithen Steven. 2011. The archaeology of water management in the Jordan Valley from the Epipalaeolithic to the Nabataean, 21,000 BP (19,000 BC) to AD 106Water, Life and Civilisation: Climate, environment and society in the Jordan Valley. (International Hydrology Series). Mithen Steven, Black Emily. p. 191–217. Cambridge: Cambridge University Press. [Cross Ref]

            12. Flohr Pascal, Jenkins Emma, Williams Helen R. S, Jamjoum Khalil, Nuimat Sameeh, Müldner Gundula. 2019. What can crop stable isotopes ever do for us? An experimental perspective on using cereal carbon stable isotope values for reconstructing water availability in semi-arid and arid environments. Vegetation History and Archaeobotany. Vol. 28:497–512. [Cross Ref]

            13. Fuller Dorian Q, van Etten Jacob, Manning Katie, Castillo Cristina, Kingwell-Banham Eleanor, Weisskopf Alison, Qin Ling, Sato Yo-Ichiro, Hijmans Robert J. 2011. The contribution of rice agriculture and livestock pastoralism to prehistoric methane levels: An archaeological assessment. The Holocene. Vol. 21(5):743–59. [Cross Ref]

            14. Guiry Eric J, Szpak Paul. 2020. Seaweed-eating sheep show that δ34 S evidence for marine diets can be fully masked by sea spray effects. Rapid Communications in Mass Spectrometry. Vol. 34(17):e8868. [Cross Ref]

            15. Hebert Craig E, Wassenaar Leonard I. 2005. Feather stable isotopes in western North American waterfowl: Spatial patterns, underlying factors and management applications. Wildlife Society Bulletin. Vol. 33(1):92–102. [Cross Ref]

            16. Krouse HR. 1980. Sulfur isotopes in our environmentHandbook of Environmental Isotope Geochemistry, Volume 1: The terrestrial environment. Fritz P, Fontes JCh. p. 435–71. Amsterdam: Elsevier Scientific. [Cross Ref]

            17. Lamb A, Madgwick R, Chenery C, Evans J. 2022. Wet feet – Using sulfur isotope analysis to identify wetland dwellers. In: UK Archaeological Science conference; Aberdeen. April 2022;

            18. Marston John M. 2017. Consequences of agriculture in Mesopotamia, Anatolia and the Levant. The Oxford Research Encyclopedia of Environmental Science. [Cross Ref]

            19. Nehlich Olaf. 2015. The application of sulfur isotope analyses in archaeological research: A review. Earth-Science Reviews. Vol. 142:1–17. [Cross Ref]

            20. Nehlich Olaf, Fuller Benjamin T, Jay Mandy, Mora Alice, Nicholson Rebecca A, Smith Colin I, Richards Michael P. 2011. Application of sulfur isotope ratios to examine weaning patterns and freshwater fish consumption in Roman Oxfordshire, UK. Geochimica Cosmochimica Acta. Vol. 75(17):4963–77. [Cross Ref]

            21. Nitsch EK, Lamb AL, Heaton THE, Vaiglova P, Fraser R, Hartman G, Moreno-Jiménez E, Lopéz-Piñeiro A, Peña-Abades D, Fairbairn A, Eriksen J, Boogard A. 2019. The preservation and interpretation of δ34S values in charred archaeobotanical remains. Archaeometry. Vol. 61(1):161–78. [Cross Ref]

            22. Rand Asta Jade. 2021. Prehispanic and colonial Maya subsistence and migration: Contributions from stable sulfur isotope analysis. PhD thesis. Memorial University of Newfoundland. [Cross Ref]

            23. Reade Hazel, Tripp Jennifer A, Charlton Sophy, Grimm Sonja B, Leesch Denise, Müller Werner, Sayle Kerry L, Fensome Alex, Higham Thomas F. G, Barnes Ian, Stevens Rhiannon E. 2020. Deglacial landscapes and the Late Upper Palaeolithic of Switzerland. Quaternary Science Reviews. Vol. 239:106372. [Cross Ref]

            24. Reade Hazel, Grimm Sonja B, Tripp Jennifer A, Neruda Petr, Nerudová Zdeňka, Roblíčková Martina, Sayle Kerry L, Kearney Rebecca, Brown Samantha, Douka Katerina, Higham Thomas F. G, Stevens Rhiannon E. 2021. Magdalenian and Epimagdalenian chronology and palaeoenvironments at Kůlna Cave, Moravia, Czech Republic. Archaeological and Anthropological Sciences. Vol. 13:4[Cross Ref]

            25. Richards MP, Fuller BT, Sponheimer M, Robinson T, Ayliffe L. 2003. Sulfur isotopes in palaeodietary studies: A review and results from a controlled feeding experiment. International Journal of Osteoarchaeology. Vol. 13(1–2):37–45. [Cross Ref]

            26. Robinson MA, Lambrick GH. 1984. Holocene alluviation and hydrology in the upper Thames basin. Nature. Vol. 308:809–14. [Cross Ref]

            27. Sherratt Andrew. 1980. Water, soil and seasonality in early cereal cultivation. World Archaeology. Vol. 11(3):313–30. [Cross Ref]

            28. Stevens Rhiannon E, Reade Hazel, Tripp Jennifer A, Sayle Kerry L, Walker Elizabeth A. 2021. Changing environment at the Late Upper Palaeolithic site of Lynx Cave, North WalesThe Beef behind all Possible Pasts: The tandem-festschrift in honour of Elaine Turner and Martin Street. Gaudzinski-Windheuser Sabine, Jöris Olaf. p. 589–607. Mainz: Römisch-Germanisches Zentralmuseum. [Cross Ref]

            29. Styring Amy K, Ater Mohammed, Hmimsa Younes, Fraser Rebecca, Miller Holly, Neef Reinder, Parsons Jessica A, Bogaard Amy. 2016. Disentangling the effect of farming practice from aridity on crop stable isotope values: A present-day model from Morocco and its application to early farming sites in the eastern Mediterranean. The Anthropocene Review. Vol. 3(1):2–22. [Cross Ref]

            30. Thode HG. 1991. Sulfur isotopes in nature and the isotopes: Natural and the environment: An overviewStable Isotopes: Natural and anthropogenic sulfur in the environment. Krouse HR, Grimenko VA. p. 1–21. New York: John Wiley & Sons.

            31. Trust BA, Fry B. 1992. Stable sulfur isotopes in plants: A review. Plant Cell and Environment. Vol. 15(9):1105–10. [Cross Ref]

            32. Wallace M, Jones G, Charles M, Fraser R, Halstead P, Heaton THE, Bogaard A. 2013. Stable carbon isotope analysis as a direct means of inferring crop water status and water management practices. World Archaeology. Vol. 45(3):388–409. [Cross Ref]

            33. Zazzo A, Monahan FJ, Moloney AP, Green S, Schmidt O. 2011. Sulfur isotopes in animal hair track distance to sea. Rapid Communications in Mass Spectrometry. Vol. 25:2371–8. [Cross Ref]

            Author and article information

            Journal
            ai
            Archaeology International
            UCL Press (UK )
            2048-4194
            30 December 2022
            : 25
            : 1
            : 168-176
            Affiliations
            [1 ]UCL Institute of Archaeology, UK
            [2 ]UK Centre for Ecology and Hydrology, UK
            [3 ]School of Earth Sciences, University of Leeds, UK
            Author notes
            Author information
            https://orcid.org/0000-0002-6140-4549
            https://orcid.org/0000-0002-1152-8033
            https://orcid.org/0000-0001-8546-5154
            https://orcid.org/0000-0001-9690-1492
            https://orcid.org/0000-0003-0370-7485
            Article
            10.14324/111.444.ai.2022.11
            56e4fd81-e699-4b7e-8cae-adaaf0fd3520
            Copyright © 2022, Rhiannon E. Stevens, Hazel Reade, Daniel S. Read, Simon H. Bottrell, Delphine Frémondeau and Sarah Wexler

            This is an open-access article distributed under the terms of the Creative Commons Attribution Licence (CC BY) 4.0 https://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

            History
            Page count
            References: 33, Pages: 10
            Categories
            Research Articles and Updates

            Archaeology,Cultural studies
            archaeobotany,collagen,bone,sulfur isotopes,waterlogged

            Comments

            Comment on this article