50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Whole-Exome Sequencing Identifies a Novel Genotype-Phenotype Correlation in the Entactin Domain of the Known Deafness Gene TECTA

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Postlingual progressive hearing loss, affecting primarily the high frequencies, is the clinical finding in most cases of autosomal dominant nonsyndromic hearing loss (ADNSHL). The molecular genetic etiology of ADNSHL is extremely heterogeneous. We applied whole-exome sequencing to reveal the genetic etiology of high-frequency hearing loss in a mid-sized Korean family without any prior linkage data. Whole-exome sequencing of four family members (two affected and two unaffected), together with our filtering strategy based on comprehensive bioinformatics analyses, identified 21 potential pathogenic candidates. Sanger validation of an additional five family members excluded 20 variants, leaving only one novel variant, TECTA c.710C>T (p.T237I), as the strongest candidate. This variant resides in the entactin (ENT) domain and co-segregated perfectly with non-progressive high-frequency hearing loss in the family. It was absent among 700 ethnically matched control chromosomes, and the T237 residue is conserved among species, which supports its pathogenicity. Interestingly, this finding contrasted with a previously proposed genotype-phenotype correlation in which variants of the ENT domain of TECTA were associated with mid-frequency hearing loss. Based upon what we observed, we propose a novel “genotype to phenotype” correlation in the ENT domain of TECTA. Our results shed light on another important application of whole-exome sequencing: the establishment of a novel genotype-phenotype in the molecular genetic diagnosis of autosomal dominant hearing loss.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Forty-six genes causing nonsyndromic hearing impairment: which ones should be analyzed in DNA diagnostics?

          Hearing impairment is the most common sensory disorder, present in 1 of every 500 newborns. With 46 genes implicated in nonsyndromic hearing loss, it is also an extremely heterogeneous trait. Here, we categorize for the first time all mutations reported in nonsyndromic deafness genes, both worldwide and more specifically in Caucasians. The most frequent genes implicated in autosomal recessive nonsyndromic hearing loss are GJB2, which is responsible for more than half of cases, followed by SLC26A4, MYO15A, OTOF, CDH23 and TMC1. None of the genes associated with autosomal dominant nonsyndromic hearing loss accounts for a preponderance of cases, although mutations are somewhat more frequently reported in WFS1, KCNQ4, COCH and GJB2. Only a minority of these genes is currently included in genetic diagnostics, the selection criteria typically reflecting: (1) high frequency as a cause of deafness (i.e. GJB2); (2) association with another recognisable feature (i.e. SLC26A4 and enlarged vestibular aqueduct); or (3) a recognisable audioprofile (i.e. WFS1). New and powerful DNA sequencing technologies have been developed over the past few years, but have not yet found their way into DNA diagnostics. Implementing these technologies is likely to happen within the next 5 years, and will cause a breakthrough in terms of power and cost efficiency. It will become possible to analyze most - if not all - deafness genes, as opposed to one or a few genes currently. This ability will greatly improve DNA diagnostics, provide epidemiological data on gene-based mutation frequencies, and reveal novel genotype-phenotype correlations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Whole exome sequencing and homozygosity mapping identify mutation in the cell polarity protein GPSM2 as the cause of nonsyndromic hearing loss DFNB82.

            Massively parallel sequencing of targeted regions, exomes, and complete genomes has begun to dramatically increase the pace of discovery of genes responsible for human disorders. Here we describe how exome sequencing in conjunction with homozygosity mapping led to rapid identification of the causative allele for nonsyndromic hearing loss DFNB82 in a consanguineous Palestinian family. After filtering out worldwide and population-specific polymorphisms from the whole exome sequence, only a single deleterious mutation remained in the homozygous region linked to DFNB82. The nonsense mutation leads to an early truncation of the G protein signaling modulator GPSM2, a protein that is essential for maintenance of cell polarity and spindle orientation. In the mouse inner ear, GPSM2 is localized to apical surfaces of hair cells and supporting cells and is most highly expressed during embryonic development. Identification of GPSM2 as essential to the development of normal hearing suggests dysregulation of cell polarity as a mechanism underlying hearing loss. Copyright 2010 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A targeted deletion in alpha-tectorin reveals that the tectorial membrane is required for the gain and timing of cochlear feedback.

              alpha-tectorin is an extracellular matrix molecule of the inner ear. Mice homozygous for a targeted deletion in a-tectorin have tectorial membranes that are detached from the cochlear epithelium and lack all noncollagenous matrix, but the architecture of the organ of Corti is otherwise normal. The basilar membranes of wild-type and alpha-tectorin mutant mice are tuned, but the alpha-tectorin mutants are 35 dB less sensitive. Basilar membrane responses of wild-type mice exhibit a second resonance, indicating that the tectorial membrane provides an inertial mass against which outer hair cells can exert forces. Cochlear microphonics recorded in alpha-tectorin mutants differ in both phase and symmetry relative to those of wild-type mice. Thus, the tectorial membrane ensures that outer hair cells can effectively respond to basilar membrane motion and that feedback is delivered with the appropriate gain and timing required for amplification.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                9 May 2014
                : 9
                : 5
                : e97040
                Affiliations
                [1 ]Department of Otorhinolaryngology, Seoul National University Bundang Hospital, Seongnam, South Korea
                [2 ]Korean Bioinformation center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
                [3 ]Department of Otolaryngology, Ajou University School of Medicine, Suwon, South Korea
                [4 ]Department of Otorhinolaryngology, Seoul national University College of Medicine, Seoul, South Korea
                [5 ]Department of Bioinformatics, University of Science and Technology, Daejeon, South Korea
                Oslo University Hospital, Norway
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: BYC NK SO. Performed the experiments: BYC JK JC ARK SJM SHL NK. Analyzed the data: BYC JK JC SJM SIK. Contributed reagents/materials/analysis tools: BYC JK JC ARK SJM SHL NK. Wrote the paper: BYC JK. Recruited patients and analyzed the clinical test results: SJM ARK JC. Performed the bioinformatics analyses: JK SL NK. Substantial input on the the manuscript: SJM JC SIK ARK JK SHL SHO. Supervised the study: NK. All authors contributed to and approved the final manuscript for publication: BYC JK JC ARK SJM SIK SHL NK SHO.

                Article
                PONE-D-14-02277
                10.1371/journal.pone.0097040
                4016231
                24816743
                59f55951-6814-42b7-8051-b7612253436f
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 16 January 2014
                : 14 April 2014
                Page count
                Pages: 8
                Funding
                This study was supported by the Korea Healthcare Technology R&D Project, Ministry for Health, Welfare and Family Affairs, Republic of Korea (Nos. A080588 and A111377), and the National Research Foundation of Korea grant funded by the Korean government (Ministry of Education, Science, and Technology; No. 20120009215). The funding bodies had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Genetics
                Medicine and Health Sciences
                Clinical Genetics
                Otorhinolaryngology
                Research and Analysis Methods
                Research Design
                Clinical Research Design

                Uncategorized
                Uncategorized

                Comments

                Comment on this article