There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
Efforts to understand and mitigate thehealth effects of particulate matter (PM) air pollutionhave a rich and interesting history. This review focuseson six substantial lines of research that have been pursued since 1997 that have helped elucidate our understanding about the effects of PM on human health. There hasbeen substantial progress in the evaluation of PM health effects at different time-scales of exposure and in the exploration of the shape of the concentration-response function. There has also been emerging evidence of PM-related cardiovascular health effects and growing knowledge regarding interconnected general pathophysiological pathways that link PM exposure with cardiopulmonary morbidiity and mortality. Despite important gaps in scientific knowledge and continued reasons for some skepticism, a comprehensive evaluation of the research findings provides persuasive evidence that exposure to fine particulate air pollution has adverse effects on cardiopulmonaryhealth. Although much of this research has been motivated by environmental public health policy, these results have important scientific, medical, and public health implications that are broader than debates over legally mandated air quality standards.
Recent studies have reported associations between particulate air pollution and daily mortality rates. Population-based, cross-sectional studies of metropolitan areas in the United States have also found associations between particulate air pollution and annual mortality rates, but these studies have been criticized, in part because they did not directly control for cigarette smoking and other health risks. In this prospective cohort study, we estimated the effects of air pollution on mortality, while controlling for individual risk factors. Survival analysis, including Cox proportional-hazards regression modeling, was conducted with data from a 14-to-16-year mortality follow-up of 8111 adults in six U.S. cities. Mortality rates were most strongly associated with cigarette smoking. After adjusting for smoking and other risk factors, we observed statistically significant and robust associations between air pollution and mortality. The adjusted mortality-rate ratio for the most polluted of the cities as compared with the least polluted was 1.26 (95 percent confidence interval, 1.08 to 1.47). Air pollution was positively associated with death from lung cancer and cardiopulmonary disease but not with death from other causes considered together. Mortality was most strongly associated with air pollution with fine particulates, including sulfates. Although the effects of other, unmeasured risk factors cannot be excluded with certainty, these results suggest that fine-particulate air pollution, or a more complex pollution mixture associated with fine particulate matter, contributes to excess mortality in certain U.S. cities.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.