The construction site operates under a hazardous environment that requires a high level of understanding in building systems to minimise accidents. However, the current building education generally adopts paper-based learning approaches that lack hands-on experiences. Furthermore, to achieve Industrial Revolution 4.0 in line with any unforeseen pandemic, the most optimum solution is to transition from physical to technological-based building education. This paper aims to address the problems by proposing a game-based virtual reality (GBVR) for building utility inspection training.
The feasibility of the GBVR for building the utility inspection training approach is validated on a sample of undergraduate engineering students through user experience (survey) and performance-based comparisons against traditional paper-based training method.
The results show that the developed GBVR training has higher system usability in terms of visual output and knowledge retention than paper-based training due to visualisation technologies. The GBVR training method has also higher user-friendliness because of the higher motivational and engagement factors through the adoption of virtual reality and game-based learning.
GBVR training required a longer training duration and achieved a lower performance score (effectiveness) but can be improved by transitioning into hands-on tasks. This study has the potentials to be extended to vocational training platforms for competency development in the construction workforce by using cutting-edge extended reality technologies.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.