14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Modified grasshopper optimization framework for optimal power flow solution

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: not found
          • Article: not found

          Grey Wolf Optimizer

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Optimization by simulated annealing.

            There is a deep and useful connection between statistical mechanics (the behavior of systems with many degrees of freedom in thermal equilibrium at a finite temperature) and multivariate or combinatorial optimization (finding the minimum of a given function depending on many parameters). A detailed analogy with annealing in solids provides a framework for optimization of the properties of very large and complex systems. This connection to statistical mechanics exposes new information and provides an unfamiliar perspective on traditional optimization problems and methods.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              No free lunch theorems for optimization

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Electrical Engineering
                Electr Eng
                Springer Science and Business Media LLC
                0948-7921
                1432-0487
                April 2019
                March 20 2019
                April 2019
                : 101
                : 1
                : 121-148
                Article
                10.1007/s00202-019-00762-4
                5e9e7894-8e7f-430f-9cfe-943c131137a6
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article