23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interpreting Meta-Analyses of Genome-Wide Association Studies

      research-article
      1 , 1 , 2 , *
      PLoS Genetics
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Meta-analysis is an increasingly popular tool for combining multiple genome-wide association studies in a single analysis to identify associations with small effect sizes. The effect sizes between studies in a meta-analysis may differ and these differences, or heterogeneity, can be caused by many factors. If heterogeneity is observed in the results of a meta-analysis, interpreting the cause of heterogeneity is important because the correct interpretation can lead to a better understanding of the disease and a more effective design of a replication study. However, interpreting heterogeneous results is difficult. The standard approach of examining the association p-values of the studies does not effectively predict if the effect exists in each study. In this paper, we propose a framework facilitating the interpretation of the results of a meta-analysis. Our framework is based on a new statistic representing the posterior probability that the effect exists in each study, which is estimated utilizing cross-study information. Simulations and application to the real data show that our framework can effectively segregate the studies predicted to have an effect, the studies predicted to not have an effect, and the ambiguous studies that are underpowered. In addition to helping interpretation, the new framework also allows us to develop a new association testing procedure taking into account the existence of effect.

          Author Summary

          Genome-wide association studies are an effective means of identifying genetic variants that are associated with diseases. Although many associated loci have been identified, those loci account for only a small fraction of the genetic contribution to the disease. The remaining contribution may be accounted by loci with very small effect sizes, so small that tens of thousands of samples are needed to identify them. Since it is costly to conduct a study collecting such a large sample, a practical alternative is to combine multiple independent studies in a single analysis called meta-analysis. However, many factors, such as genetic or environmental factors, can differ between the studies combined in a meta-analysis. These factors can cause the effect size of the causal variant to differ between the studies, a phenomenon called heterogeneity. If heterogeneity exists in the data of a meta-analysis, interpreting the meta-analysis results is an important but difficult task. In this paper, we propose a method that helps such interpretation, in addition to a new association testing procedure that is powerful when heterogeneity exists.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Explaining heterogeneity in meta-analysis: a comparison of methods.

          Exploring the possible reasons for heterogeneity between studies is an important aspect of conducting a meta-analysis. This paper compares a number of methods which can be used to investigate whether a particular covariate, with a value defined for each study in the meta-analysis, explains any heterogeneity. The main example is from a meta-analysis of randomized trials of serum cholesterol reduction, in which the log-odds ratio for coronary events is related to the average extent of cholesterol reduction achieved in each trial. Different forms of weighted normal errors regression and random effects logistic regression are compared. These analyses quantify the extent to which heterogeneity is explained, as well as the effect of cholesterol reduction on the risk of coronary events. In a second example, the relationship between treatment effect estimates and their precision is examined, in order to assess the evidence for publication bias. We conclude that methods which allow for an additive component of residual heterogeneity should be used. In weighted regression, a restricted maximum likelihood estimator is appropriate, although a number of other estimators are also available. Methods which use the original form of the data explicitly, for example the binomial model for observed proportions rather than assuming normality of the log-odds ratios, are now computationally feasible. Although such methods are preferable in principle, they often give similar results in practice. Copyright 1999 John Wiley & Sons, Ltd.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prioritizing GWAS results: A review of statistical methods and recommendations for their application.

            Genome-wide association studies (GWAS) have rapidly become a standard method for disease gene discovery. A substantial number of recent GWAS indicate that for most disorders, only a few common variants are implicated and the associated SNPs explain only a small fraction of the genetic risk. This review is written from the viewpoint that findings from the GWAS provide preliminary genetic information that is available for additional analysis by statistical procedures that accumulate evidence, and that these secondary analyses are very likely to provide valuable information that will help prioritize the strongest constellations of results. We review and discuss three analytic methods to combine preliminary GWAS statistics to identify genes, alleles, and pathways for deeper investigations. Meta-analysis seeks to pool information from multiple GWAS to increase the chances of finding true positives among the false positives and provides a way to combine associations across GWAS, even when the original data are unavailable. Testing for epistasis within a single GWAS study can identify the stronger results that are revealed when genes interact. Pathway analysis of GWAS results is used to prioritize genes and pathways within a biological context. Following a GWAS, association results can be assigned to pathways and tested in aggregate with computational tools and pathway databases. Reviews of published methods with recommendations for their application are provided within the framework for each approach. 2010 The American Society of Human Genetics. Published by Elsevier Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bayesian statistical methods for genetic association studies.

              Bayesian statistical methods have recently made great inroads into many areas of science, and this advance is now extending to the assessment of association between genetic variants and disease or other phenotypes. We review these methods, focusing on single-SNP tests in genome-wide association studies. We discuss the advantages of the Bayesian approach over classical (frequentist) approaches in this setting and provide a tutorial on basic analysis steps, including practical guidelines for appropriate prior specification. We demonstrate the use of Bayesian methods for fine mapping in candidate regions, discuss meta-analyses and provide guidance for refereeing manuscripts that contain Bayesian analyses.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                March 2012
                March 2012
                1 March 2012
                : 8
                : 3
                : e1002555
                Affiliations
                [1 ]Department of Computer Science, University of California Los Angeles, Los Angeles, California, United States of America
                [2 ]Department of Human Genetics, University of California Los Angeles, Los Angeles, California, United States of America
                University of Washington, United States of America
                Author notes

                Conceived and designed the experiments: BH EE. Performed the experiments: BH. Analyzed the data: BH EE. Contributed reagents/materials/analysis tools: BH. Wrote the paper: BH EE. Developed the software: BH.

                Article
                PGENETICS-D-11-01216
                10.1371/journal.pgen.1002555
                3291559
                22396665
                7121af9d-ed4b-4785-8830-ab2f5ab2d958
                Han, Eskin. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 14 June 2011
                : 10 January 2012
                Page count
                Pages: 11
                Categories
                Research Article
                Biology
                Genetics
                Mathematics
                Statistics

                Genetics
                Genetics

                Comments

                Comment on this article