52
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Urbanization and Increasing Flood Risk in the Northern Coast of Central Java—Indonesia: An Assessment towards Better Land Use Policy and Flood Management

      , , ,
      Land
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study explores urbanization and flood events in the northern coast of Central Java with river basin as its unit of analysis. Two types of analysis were applied (i.e., spatial data and non-spatial data analysis) at four river basin areas in Central Java—Indonesia. The spatial analysis is focused on the assessment of LULC change in 2009–2018 based on Landsat Imagery. The non-spatial data (i.e., rural-urban classification and flood events) were overlaid with results of spatial data analyses. Our findings show that urbanization, as indicated by the growth rate of built-up areas, is very significant. Notable exposure to flood has taken place in the urban and potentially urban areas. The emerging discussion indicates that river basins possess dual spatial identity in the urban system (policy- and land-use-related). Proper land use planning and control is an essential instrument to safeguard urban areas (such as the case study area) and the entire island of Java in Indonesia. More attention should be put upon the river basin areas in designing eco-based approach to tackle the urban flood crises. In this case, the role of governance in flood management is crucial.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: not found
          • Article: not found

          The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Future Coastal Population Growth and Exposure to Sea-Level Rise and Coastal Flooding - A Global Assessment

            Coastal zones are exposed to a range of coastal hazards including sea-level rise with its related effects. At the same time, they are more densely populated than the hinterland and exhibit higher rates of population growth and urbanisation. As this trend is expected to continue into the future, we investigate how coastal populations will be affected by such impacts at global and regional scales by the years 2030 and 2060. Starting from baseline population estimates for the year 2000, we assess future population change in the low-elevation coastal zone and trends in exposure to 100-year coastal floods based on four different sea-level and socio-economic scenarios. Our method accounts for differential growth of coastal areas against the land-locked hinterland and for trends of urbanisation and expansive urban growth, as currently observed, but does not explicitly consider possible displacement or out-migration due to factors such as sea-level rise. We combine spatially explicit estimates of the baseline population with demographic data in order to derive scenario-driven projections of coastal population development. Our scenarios show that the number of people living in the low-elevation coastal zone, as well as the number of people exposed to flooding from 1-in-100 year storm surge events, is highest in Asia. China, India, Bangladesh, Indonesia and Viet Nam are estimated to have the highest total coastal population exposure in the baseline year and this ranking is expected to remain largely unchanged in the future. However, Africa is expected to experience the highest rates of population growth and urbanisation in the coastal zone, particularly in Egypt and sub-Saharan countries in Western and Eastern Africa. The results highlight countries and regions with a high degree of exposure to coastal flooding and help identifying regions where policies and adaptive planning for building resilient coastal communities are not only desirable but essential. Furthermore, we identify needs for further research and scope for improvement in this kind of scenario-based exposure analysis.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Urbanization exacerbated the rainfall and flooding caused by hurricane Harvey in Houston

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Land
                Land
                MDPI AG
                2073-445X
                October 2020
                September 23 2020
                : 9
                : 10
                : 343
                Article
                10.3390/land9100343
                787ae87e-4cbb-4f81-bf64-3cf444fc81b6
                © 2020

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content210

                Cited by21

                Most referenced authors290