Pairing in an attractively interacting two-component Fermi gas in the absence of the inversion symmetry and/or the time-reversal symmetry may give rise to exotic superfluid states. Notable examples range from the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state with a finite center-of-mass momentum in a polarized Fermi gas, to the topological superfluid state in a two-dimensional Fermi gas under Rashba spin-orbit coupling and an out-of-plane Zeeman field. Here, we show that a topological FFLO state can be stabilized in a two-dimensional Fermi gas with Rashba spin-orbit coupling and both in-plane and out-of-plane Zeeman fields. We characterize the topological FFLO state by a non-trivial Berry phase, and demonstrate the stability region of the state on the zero-temperature phase diagram. Given its unique properties in both the quasi-particle dispersion spectra and the momentum distribution, signatures of the topological FFLO state can be detected using existing experimental techniques.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.