8
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      2-Oxoquinoline Arylaminothiazole Derivatives in Identifying Novel Potential Anticancer Agents by Applying 3D-QSAR, Docking, and Molecular Dynamics Simulation Studies

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract Tubulin plays an indispensable role in regulating various important cellular processes. Recently, it is known as a hopeful therapeutic target for the rapid division of cancer cells. Novel series of 2-oxoquinoline arylaminothiazole derivatives have been recently identified as promising tubulin inhibitors with potent cytotoxicity activity against HeLa cancer cell line. In this study, a 3D-QSAR approach by using CoMFA and CoMSIA techniques was applied to the reported derivatives to understand their pharmacological essentiality contributing to the tubulin inhibition activity and selectivity. The optimum CoMFA and CoMSIA models were found to have significant statistical reliability and high predictive ability after internal and external validation. By analyzing the contour maps, the electrostatic and hydrophobic interactions were found to be crucial for improving the inhibitory activity and four novel tubulin inhibitors (Compounds D1, D2, D3, and D4) were designed based on the validated 3D-QSAR models. Moreover, the docking findings showed that residues Gln136, Val238, Thr239, Asn167, Val 318 and Ala 316 played important roles for quinoline binding to tubulin. Among the newly designed compounds, compound D1 with the highest total scoring was subjected to detailed molecular dynamics (MD) simulation and compared to the most active compound. The conformational stability of compound D1 complexed with tubulin protein was confirmed by a 50-ns molecular dynamics simulation, which was congruent with molecular docking.

          Translated abstract

          Resumen La tubulina juega un papel indispensable en la regulación de varios procesos celulares importantes. Recientemente, se le ha reconicodo como un agente promisorio para atacar la rápida división de las células cancerosas. Últimamente se ha identificado una nueva serie de derivados de arilaminotiazo-2-oxoquinolina como potenciales inhibidores de la tubulina, con una elevada actividad citotóxica contra la línea celular de cáncer HeLa. En este estudio, se aplicó a los derivados informados un estudio 3D-QSAR mediante el uso de técnicas CoMFA y CoMSIA para comprender los factores farmacológicos que contribuyen a la actividad como inhibidor y selectivo de la tubulina. Se encontró que los modelos CoMFA y CoMSIA óptimos tienen una confiabilidad estadística significativa y una alta capacidad predictiva después de la validación interna y externa. Al analizar los mapas de contorno, se descubrió que las interacciones electrostáticas e hidrófobas eran cruciales para mejorar la actividad inhibidora y se diseñaron cuatro nuevos inhibidores de la tubulina (compuestos D1, D2, D3 y D4) basados en los modelos 3D-QSAR validados. Además, los hallazgos de acoplamiento mostraron que los residuos Gln136, Val238, Thr239, Asn167, Val 318 y Ala 316 desempeñaron papeles importantes en la unión de la quinolina a la tubulina. Entre los compuestos de nuevo diseño, el compuesto D1 con la puntuación total más alta se sometió a una simulación detallada de dinámica molecular (MD) y se comparó con el compuesto más activo. La estabilidad conformacional del compuesto D1 unido a la proteína tubulina se confirmó mediante una simulación de dinámica molecular de 50 ns, que fue congruente con el acoplamiento molecular.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: not found
          • Book: not found

          QSAR Comb. Sci

            Bookmark
            • Record: found
            • Abstract: not found
            • Book: not found

            Schrödinger Release 2020-1: Desmond Molecular Dynamics System, D. E. Shaw Research, New York, NY, 2020. Maestro-Desmond Interoperability Tools

            (2020)
              Bookmark
              • Record: found
              • Abstract: not found
              • Book: not found

              J. Mol. Graph. Model

                Bookmark

                Author and article information

                Journal
                jmcs
                Journal of the Mexican Chemical Society
                J. Mex. Chem. Soc
                Sociedad Química de México A.C. (Ciudad de México, Ciudad de México, Mexico )
                1870-249X
                March 2022
                : 66
                : 1
                : 79-94
                Affiliations
                [4] orgnamePolytechnic University of Bucharest orgdiv1Department of General Chemistry
                [3] Beni mellal orgnameSultan Moulay Sliman University orgdiv1EST Khenifra Morocco
                [2] orgnameUniversity of Maryland orgdiv1Department of Nutrition and Food Science United States
                [1] Meknes orgnameUniversity Moulay Ismail orgdiv1Faculty of Science orgdiv2Molecular chemistry and Natural Substances Laboratory Morocco
                Article
                S1870-249X2022000100079 S1870-249X(22)06600100079
                10.29356/jmcs.v66i1.1578
                8119975e-38b1-4c5e-b998-af96eafef900

                This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

                History
                : 07 May 2021
                : 30 November 2021
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 35, Pages: 16
                Product

                SciELO Mexico

                Categories
                Articles

                quuinolina,cáncer,3D-QSAR,molecular docking,MD simulation,quinoline,cancer,QSAR-3D,Docking molecular,Simulaciones de Dinámica Molecular

                Comments

                Comment on this article