There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
Land use has generally been considered a local environmental issue, but it is becoming a force of global importance. Worldwide changes to forests, farmlands, waterways, and air are being driven by the need to provide food, fiber, water, and shelter to more than six billion people. Global croplands, pastures, plantations, and urban areas have expanded in recent decades, accompanied by large increases in energy, water, and fertilizer consumption, along with considerable losses of biodiversity. Such changes in land use have enabled humans to appropriate an increasing share of the planet's resources, but they also potentially undermine the capacity of ecosystems to sustain food production, maintain freshwater and forest resources, regulate climate and air quality, and ameliorate infectious diseases. We face the challenge of managing trade-offs between immediate human needs and maintaining the capacity of the biosphere to provide goods and services in the long term.
Despite substantial focus on sustainability issues in both science and politics, humanity remains on largely unsustainable development trajectories. Partly, this is due to the failure of sustainability science to engage with the root causes of unsustainability. Drawing on ideas by Donella Meadows, we argue that many sustainability interventions target highly tangible, but essentially weak, leverage points (i.e. using interventions that are easy, but have limited potential for transformational change). Thus, there is an urgent need to focus on less obvious but potentially far more powerful areas of intervention. We propose a research agenda inspired by systems thinking that focuses on transformational 'sustainability interventions', centred on three realms of leverage: reconnecting people to nature, restructuring institutions and rethinking how knowledge is created and used in pursuit of sustainability. The notion of leverage points has the potential to act as a boundary object for genuinely transformational sustainability science.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.