When boric acid (BA) is added to poly(vinyl alcohol) (PVA), a chemical reaction occurs to form the cross-linkages between the amorphous PVA chains. The local structural change caused by this reaction has been clarified concretely from the microscopic level on the basis of the X-ray-analyzed crystal structure, Raman spectra, and ab initio density functional theory using a model compound produced by the reaction between pentanediol (PENT) and boric acid (PENT-BA). The PENT-BA compound was found to take the TT and TG conformations in the methylene segmental parts depending on the stereoregularity of the PENT molecule itself, meso and racemo configurations, respectively. These two conformations give the Raman bands at the different positions. By comparison of the Raman spectra between the PVA-BA and PENT-BA model compounds, the local structures of PVA chains connected to BA molecules have been derived concretely: the syndiotactic PVA parts in the amorphous region form the TG-type ring structure with the 3-coordinate boron atom, where T and G are trans and gauche conformers, respectively. On the other hand, the isotactic PVA part takes the TT conformation when it forms a ring with boron atom. The thus-created rings are hydrogen-bonded to form a dimer, which plays a role as cross-linkage between the neighboring PVA chain segments in the amorphous region.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.