31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nocturnal Pruritus: The Battle for a Peaceful Night’s Sleep

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chronic pruritus is a debilitating condition with numerous etiologies. Many patients suffer from nocturnal pruritus, which can decrease quality of life and affect mortality in hemodialysis patients. Nocturnal pruritus may occur in all sleep stages but is most prevalent in stages N1 and N2. Further research is needed to elucidate the pathophysiology of nocturnal itch, which will aid in the development of tailored management strategies.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Why sleep is important for health: a psychoneuroimmunology perspective.

          Sleep has a critical role in promoting health. Research over the past decade has documented that sleep disturbance has a powerful influence on the risk of infectious disease, the occurrence and progression of several major medical illnesses including cardiovascular disease and cancer, and the incidence of depression. Increasingly, the field has focused on identifying the biological mechanisms underlying these effects. This review highlights the impact of sleep on adaptive and innate immunity, with consideration of the dynamics of sleep disturbance, sleep restriction, and insomnia on (a) antiviral immune responses with consequences for vaccine responses and infectious disease risk and (b) proinflammatory immune responses with implications for cardiovascular disease, cancer, and depression. This review also discusses the neuroendocrine and autonomic neural underpinnings linking sleep disturbance and immunity and the reciprocal links between sleep and inflammatory biology. Finally, interventions are discussed as effective strategies to improve sleep, and potential opportunities are identified to promote sleep health for therapeutic control of chronic infectious, inflammatory, and neuropsychiatric diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cumulative sleepiness, mood disturbance, and psychomotor vigilance performance decrements during a week of sleep restricted to 4-5 hours per night.

            To determine whether a cumulative sleep debt (in a range commonly experienced) would result in cumulative changes in measures of waking neurobehavioral alertness, 16 healthy young adults had their sleep restricted 33% below habitual sleep duration, to an average 4.98 hours per night [standard deviation (SD) = 0.57] for seven consecutive nights. Subjects slept in the laboratory, and sleep and waking were monitored by staff and actigraphy. Three times each day (1000, 1600, and 2200 hours) subjects were assessed for subjective sleepiness (SSS) and mood (POMS) and were evaluated on a brief performance battery that included psychomotor vigilance (PVT), probed memory (PRM), and serial-addition testing, Once each day they completed a series of visual analog scales (VAS) and reported sleepiness and somatic and cognitive/emotional problems. Sleep restriction resulted in statistically robust cumulative effects on waking functions. SSS ratings, subscale scores for fatigue, confusion, tension, and total mood disturbance from the POMS and VAS ratings of mental exhaustion and stress were evaluated across days of restricted sleep (p = 0.009 to p = 0.0001). PVT performance parameters, including the frequency and duration of lapses, were also significantly increased by restriction (p = 0.018 to p = 0.0001). Significant time-of-day effects were evident in SSS and PVT data, but time-of-day did not interact with the effects of sleep restriction across days. The temporal profiles of cumulative changes in neurobehavioral measures of alertness as a function of sleep restriction were generally consistent. Subjective changes tended to precede performance changes by 1 day, but overall changes in both classes of measure were greatest during the first 2 days (P1, P2) and last 2 days (P6, P7) of sleep restriction. Data from subsets of subjects also showed: 1) that significant decreases in the MSLT occurred during sleep restriction, 2) that the elevated sleepiness and performance deficits continued beyond day 7 of restriction, and 3) that recovery from these deficits appeared to require two full nights of sleep. The cumulative increase in performance lapses across days of sleep restriction correlated closely with MSLT results (r = -0.95) from an earlier comparable experiment by Carskadon and Dement (1). These findings suggest that cumulative nocturnal sleep debt had a dynamic and escalating analog in cumulative daytime sleepiness and that asymptotic or steady-state sleepiness was not achieved in response to sleep restriction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              How (and why) the immune system makes us sleep.

              Good sleep is necessary for physical and mental health. For example, sleep loss impairs immune function, and sleep is altered during infection. Immune signalling molecules are present in the healthy brain, where they interact with neurochemical systems to contribute to the regulation of normal sleep. Animal studies have shown that interactions between immune signalling molecules (such as the cytokine interleukin 1) and brain neurochemical systems (such as the serotonin system) are amplified during infection, indicating that these interactions might underlie the changes in sleep that occur during infection. Why should the immune system cause us to sleep differently when we are sick? We propose that the alterations in sleep architecture during infection are exquisitely tailored to support the generation of fever, which in turn imparts survival value.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                22 March 2016
                March 2016
                : 17
                : 3
                : 425
                Affiliations
                [1 ]Department of Dermatology/Temple Itch Center, Lewis Katz School of Medicine, Temple University, 3322 North Broad Street-Suite 212, Philadelphia, PA 19140, USA; michael.lavery@ 123456tuhs.temple.edu (M.J.L.); tue61103@ 123456temple.edu (C.S.)
                [2 ]Department of Neurosciences, Royal Victoria Hospital, 274 Grosvenor Road, Belfast, Northern Ireland BT12 6BA, UK; michael.kinney@ 123456belfasttrust.hscni.net
                Author notes
                [* ]Correspondence: gil.yosipovitch@ 123456tuhs.temple.edu ; Tel.: +1-215-707-5460
                Article
                ijms-17-00425
                10.3390/ijms17030425
                4813276
                27011178
                8d0fc0d8-6932-44cb-b990-f65e345e6bcc
                © 2016 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 08 March 2016
                : 16 March 2016
                Categories
                Review

                Molecular biology
                sleep,pruritus,physiology,sleep cycle,circadian rhythm,atopic dermatitis
                Molecular biology
                sleep, pruritus, physiology, sleep cycle, circadian rhythm, atopic dermatitis

                Comments

                Comment on this article