13
views
0
recommends
+1 Recommend
3 collections
    0
    shares

      For submission information please click on this link: https://www.hogrefe.com/eu/service/for-journal-authors

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Entwicklung der Rechenflüssigkeit in der 5. Klasse und relevante Einflussfaktoren

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Zusammenfassung: Hintergrund: Rechenflüssigkeit ist die Fähigkeit, in einem umgrenzten Zeitraum möglichst viele richtige Lösungen bei der Berechnung von einfachen Additions-, Subtraktions-, Multiplikations- und Divisionsaufgaben mit einstelligen Zahlen zu erzielen. Eine gute Rechenflüssigkeit geht mit einer reduzierten Belastung des Arbeitsgedächtnisses einher und führt zu besseren Leistungen bei anspruchsvolleren mathematischen Kompetenzen (u.a. Bruchrechnung). Trotz dieser hohen Bedeutung liegen bisher kaum Befunde aus dem deutschsprachigen Raum vor. Methode: Die vorliegende Untersuchung erhebt die Rechenflüssigkeit innerhalb der fünften Jahrgangsstufe zu vier Messzeitpunkten. Der Einfluss von Intelligenz, Leseflüssigkeit, Lernverhalten (eingeschätzt durch die Lehrkraft), Geschlecht sowie sozioökonomischer Status wird analysiert. Ergebnisse und Diskussion: Die Forschungsergebnisse zeigen, dass sich die Rechenflüssigkeit in der fünften Jahrgangsstufe signifikant steigert.Der größte Teil der Varianz wird einerseits durch die frühere Rechenflüssigkeit erklärt, als auch durch die Leseflüssigkeit als signifikanter Prädiktor. Zukünftige Studien sollten die Bedeutung der Rechenflüssigkeit für weitere mathematische Kompetenzen in der Sekundarstufe sowie den Einfluss von spezifischen Prädiktoren betrachten.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: not found
          • Article: not found

          Power analysis and determination of sample size for covariance structure modeling.

            Bookmark
            • Record: found
            • Abstract: found
            • Book: not found

            Principles and Practice of Structural Equation Modeling

            Designed for researchers and students without an extensive quantitative background, this book offers an informative guide to the application, interpretation, and pitfalls of structural equation modeling (SEM) in psychology and the social sciences. This is an accessible volume which covers introductory techniques, including path analysis and confirmatory factor analysis, and provides an overview of more advanced methods, such as the evaluation of nonlinear effects, the analysis of means in covariance structure models, and latent growth models for longitudinal data. Providing examples from various disciplines to illustrate all aspects of SEM, the author offers clear instructions on the preparation and screening of data, common mistakes to avoid, and features of widely used software programs (Amos, EQS, and LISREL). Readers will acquire the skills necessary to begin to use SEM in their own research, and to interpret and critique the use of the method by others, making this a valuable text for students of psychology, communication sciences, education, sociology, and related fields.<br>
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cognitive predictors of achievement growth in mathematics: a 5-year longitudinal study.

              The study's goal was to identify the beginning of 1st grade quantitative competencies that predict mathematics achievement start point and growth through 5th grade. Measures of number, counting, and arithmetic competencies were administered in early 1st grade and used to predict mathematics achievement through 5th (n = 177), while controlling for intelligence, working memory, and processing speed. Multilevel models revealed intelligence and processing speed, and the central executive component of working memory predicted achievement or achievement growth in mathematics and, as a contrast domain, word reading. The phonological loop was uniquely predictive of word reading and the visuospatial sketch pad of mathematics. Early fluency in processing and manipulating numerical set size and Arabic numerals, accurate use of sophisticated counting procedures for solving addition problems, and accuracy in making placements on a mathematical number line were uniquely predictive of mathematics achievement. Use of memory-based processes to solve addition problems predicted mathematics and reading achievement but in different ways. The results identify the early quantitative competencies that uniquely contribute to mathematics learning.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Lernen und Lernstörungen
                Lernen und Lernstörungen
                Hogrefe Publishing Group
                2235-0977
                2235-0985
                April 02 2024
                Affiliations
                [1 ]Institut für Sonder- und Rehabilitationspädagogik, Universität Oldenburg, Deutschland
                Article
                10.1024/2235-0977/a000446
                90befc3d-c6b7-4dac-95bb-09233b888ac0
                © 2024

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content331

                Most referenced authors472