14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Applied Superconductivity 

      Superconducting Quantum Interference (SQUIDs)

      edited_book

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references368

          • Record: found
          • Abstract: found
          • Article: not found

          Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics.

          The interaction of matter and light is one of the fundamental processes occurring in nature, and its most elementary form is realized when a single atom interacts with a single photon. Reaching this regime has been a major focus of research in atomic physics and quantum optics for several decades and has generated the field of cavity quantum electrodynamics. Here we perform an experiment in which a superconducting two-level system, playing the role of an artificial atom, is coupled to an on-chip cavity consisting of a superconducting transmission line resonator. We show that the strong coupling regime can be attained in a solid-state system, and we experimentally observe the coherent interaction of a superconducting two-level system with a single microwave photon. The concept of circuit quantum electrodynamics opens many new possibilities for studying the strong interaction of light and matter. This system can also be exploited for quantum information processing and quantum communication and may lead to new approaches for single photon generation and detection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synthesizing arbitrary quantum states in a superconducting resonator.

            The superposition principle is a fundamental tenet of quantum mechanics. It allows a quantum system to be 'in two places at the same time', because the quantum state of a physical system can simultaneously include measurably different physical states. The preparation and use of such superposed states forms the basis of quantum computation and simulation. The creation of complex superpositions in harmonic systems (such as the motional state of trapped ions, microwave resonators or optical cavities) has presented a significant challenge because it cannot be achieved with classical control signals. Here we demonstrate the preparation and measurement of arbitrary quantum states in an electromagnetic resonator, superposing states with different numbers of photons in a completely controlled and deterministic manner. We synthesize the states using a superconducting phase qubit to phase-coherently pump photons into the resonator, making use of an algorithm that generalizes a previously demonstrated method of generating photon number (Fock) states in a resonator. We completely characterize the resonator quantum state using Wigner tomography, which is equivalent to measuring the resonator's full density matrix.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Phase-sensitive tests of the symmetry of the pairing state in the high-temperature superconductors—Evidence fordx2−y2symmetry

                Bookmark

                Author and book information

                Book Chapter
                January 30 2015
                : 949-1110
                10.1002/9783527670635.ch9
                91963fb6-f5d7-40a0-bd46-9fb94181a01d
                History

                Comments

                Comment on this book

                Book chapters

                Similar content2,785

                Cited by1