The quartz crystal microbalance (QCM) sensing platform detects a wide variety of gases, yet lacks a system designed specifically for carbon monoxide (CO) gas. Here, we utilized ceric dioxide (CeO2) nanorods as the sensing material and coated them onto the QCM surface to construct a novel QCM sensor. This sensor is capable of detecting CO concentrations as low as 500 ppb and exhibits satisfactory sensitivity, response speed, selectivity, repeatability, and long-term stability. The sensing mechanism and the influence of environmental humidity on this sensor were also explored. This work broadens the application scope of QCM sensing platform and provides an additional solution for detecting CO at room temperature.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.