35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables

      , , , ,
      Coordination Chemistry Reviews
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references143

          • Record: found
          • Abstract: found
          • Article: not found

          Exposure to pesticides and the associated human health effects.

          Pesticides are used widely to control weeds and insect infestation in agricultural fields and various pests and disease carriers (e.g., mosquitoes, ticks, rats, and mice) in houses, offices, malls, and streets. As the modes of action for pesticides are not species-specific, concerns have been raised about environmental risks associated with their exposure through various routes (e.g., residues in food and drinking water). Although such hazards range from short-term (e.g., skin and eye irritation, headaches, dizziness, and nausea) to chronic impacts (e.g., cancer, asthma, and diabetes), their risks are difficult to elucidate due to the involvement of various factors (e.g., period and level of exposure, type of pesticide (regarding toxicity and persistence), and the environmental characteristics of the affected areas). There are no groups in the human population that are completely unexposed to pesticides while most diseases are multi-causal to add considerable complexity to public health assessments. Hence, development of eco-friendly pesticide alternatives (e.g., EcoSMART) and Integrated Pest Management (IPM) techniques is desirable to reduce the impacts of pesticides. This paper was hence organized to present a comprehensive review on pesticides with respect to their types, environmental distribution, routes of exposure, and health impacts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pesticides and human chronic diseases: evidences, mechanisms, and perspectives.

            Along with the wide use of pesticides in the world, the concerns over their health impacts are rapidly growing. There is a huge body of evidence on the relation between exposure to pesticides and elevated rate of chronic diseases such as different types of cancers, diabetes, neurodegenerative disorders like Parkinson, Alzheimer, and amyotrophic lateral sclerosis (ALS), birth defects, and reproductive disorders. There is also circumstantial evidence on the association of exposure to pesticides with some other chronic diseases like respiratory problems, particularly asthma and chronic obstructive pulmonary disease (COPD), cardiovascular disease such as atherosclerosis and coronary artery disease, chronic nephropathies, autoimmune diseases like systemic lupus erythematous and rheumatoid arthritis, chronic fatigue syndrome, and aging. The common feature of chronic disorders is a disturbance in cellular homeostasis, which can be induced via pesticides' primary action like perturbation of ion channels, enzymes, receptors, etc., or can as well be mediated via pathways other than the main mechanism. In this review, we present the highlighted evidence on the association of pesticide's exposure with the incidence of chronic diseases and introduce genetic damages, epigenetic modifications, endocrine disruption, mitochondrial dysfunction, oxidative stress, endoplasmic reticulum stress and unfolded protein response (UPR), impairment of ubiquitin proteasome system, and defective autophagy as the effective mechanisms of action. Copyright © 2013 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biosensors and bioelectronics on smartphone for portable biochemical detection.

              Smartphone has been widely integrated with sensors, such as test strips, sensor chips, and hand-held detectors, for biochemical detections due to its portability and ubiquitous availability. Utilizing built-in function modules, smartphone is often employed as controller, analyzer, and displayer for rapid, real-time, and point-of-care monitoring, which can significantly simplify design and reduce cost of the detecting systems. This paper presents a review of biosensors and bioelectronics on smartphone for portable biochemical detections. The biosensors and bioelectronics based on smartphone can mainly be classified into biosensors using optics, surface plasmon resonance, electrochemistry, and near-field communication. The developments of these biosensors and bioelectronics on smartphone are reviewed along with typical biochemical detecting cases. Sensor strategies, detector attachments, and coupling methods are highlighted to show designs of the compact, lightweight, and low-cost sensor systems. The performances and advantages of these designs are introduced with their applications in healthcare diagnosis, environment monitoring, and food evaluation. With advances in micro-manufacture, sensor technology, and miniaturized electronics, biosensor and bioelectronic devices on smartphone can be used to perform biochemical detections as common and convenient as electronic tag readout in foreseeable future.
                Bookmark

                Author and article information

                Journal
                Coordination Chemistry Reviews
                Coordination Chemistry Reviews
                Elsevier BV
                00108545
                February 2022
                February 2022
                : 453
                : 214305
                Article
                10.1016/j.ccr.2021.214305
                a8701a60-102f-44a8-b7cf-5ca134eb6e4c
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content1,035

                Cited by80

                Most referenced authors1,425