33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Versatile chemical transformations of surface functional groups in 2D transition-metal carbides (MXenes) open up a new design space for this broad class of functional materials. We introduce a general strategy to install and remove surface groups by performing substitution and elimination reactions in molten inorganic salts. Successful synthesis of MXenes with O, NH, S, Cl, Se, Br, and Te surface terminations, as well as bare MXenes (no surface termination) was demonstrated. These MXenes show distinctive structural and electronic properties. For example, the surface groups control interatomic distances in the MXene lattice, and Tin+1Cn (n = 1, 2) MXenes terminated with Te2– ligands show a giant, (>18%) in-plane lattice expansion compared to the bulk TiC lattice. Nb2C MXenes exhibited surface-group-dependent superconductivity.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: not found
          • Article: not found

          Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene)

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Intercalation and delamination of layered carbides and carbonitrides.

            Intercalation and delamination of two-dimensional solids in many cases is a requisite step for exploiting their unique properties. Herein we report on the intercalation of two-dimensional Ti3C2, Ti3CN and TiNbC-so called MXenes. Intercalation of hydrazine, and its co-intercalation with N,N-dimethylformamide, resulted in increases of the c-lattice parameters of surface functionalized f-Ti3C2, from 19.5 to 25.48 and 26.8 Å, respectively. Urea is also intercalated into f-Ti3C2. Molecular dynamics simulations suggest that a hydrazine monolayer intercalates between f-Ti3C2 layers. Hydrazine is also intercalated into f-Ti3CN and f-TiNbC. When dimethyl sulphoxide is intercalated into f-Ti3C2, followed by sonication in water, the f-Ti3C2 is delaminated forming a stable colloidal solution that is in turn filtered to produce MXene 'paper'. The latter shows excellent Li-ion capacity at extremely high charging rates.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries.

              New two-dimensional niobium and vanadium carbides have been synthesized by selective etching, at room temperature, of Al from Nb2AlC and V2AlC, respectively. These new matrials are promising electrode materials for Li-ion batteries, demonstrating good capability to handle high charge-discharge rates. Reversible capacities of 170 and 260 mA·h·g(-1) at 1 C, and 110 and 125 mA·h·g(-1) at 10 C were obtained for Nb2C and V2C-based electrodes, respectively.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                July 02 2020
                : eaba8311
                Affiliations
                [1 ]Department of Chemistry and James Franck Institute, University of Chicago, Chicago, IL 60637, USA.
                [2 ]Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA.
                [3 ]Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA.
                Article
                10.1126/science.aba8311
                32616671
                aa0a6462-bd2f-48e9-8860-3c36f0786605
                © 2020
                History

                Comments

                Comment on this article