29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      State of the Art of Genetic Engineering in Potato: From the First Report to Its Future Potential

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Potato ( Solanum tuberosum L.) is a crop of world importance that produces tubers of high nutritional quality. It is considered one of the promising crops to overcome the challenges of poverty and hunger worldwide. However, it is exposed to different biotic and abiotic stresses that can cause significant losses in production. Thus, potato is a candidate of special relevance for improvements through conventional breeding and biotechnology. Since conventional breeding is time-consuming and challenging, genetic engineering provides the opportunity to introduce/switch-off genes of interest without altering the allelic combination that characterize successful commercial cultivars or to induce targeted sequence modifications by New Breeding Techniques. There is a variety of methods for potato improvement via genetic transformation. Most of them incorporate genes of interest into the nuclear genome; nevertheless, the development of plastid transformation protocols broadened the available approaches for potato breeding. Although all methods have their advantages and disadvantages, Agrobacterium-mediated transformation is the most used approach. Alternative methods such as particle bombardment, protoplast transfection with polyethylene glycol and microinjection are also effective. Independently of the DNA delivery approach, critical steps for a successful transformation are a rapid and efficient regeneration protocol and a selection system. Several critical factors affect the transformation efficiency: vector type, insert size, Agrobacterium strain, explant type, composition of the subculture media, selective agent, among others. Moreover, transient or stable transformation, constitutive or inducible promoters, antibiotic/herbicide resistance or marker-free strategies can be considered. Although great efforts have been made to optimize all the parameters, potato transformation protocols are highly genotype-dependent. Genome editing technologies provide promising tools in genetic engineering allowing precise modification of targeted sequences. Interestingly, transient expression of genome editing components in potato protoplasts was reported to generate edited plants without the integration of any foreign DNA, which is a valuable aspect from both a scientific and a regulatory perspective. In this review, current challenges and opportunities concerning potato genetic engineering strategies developed to date are discussed. We describe their critical parameters and constrains, and the potential application of the available tools for functional analyses or biotechnological purposes. Public concerns and safety issues are also addressed.

          Related collections

          Most cited references170

          • Record: found
          • Abstract: found
          • Article: not found

          A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.

          Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems provide bacteria and archaea with adaptive immunity against viruses and plasmids by using CRISPR RNAs (crRNAs) to guide the silencing of invading nucleic acids. We show here that in a subset of these systems, the mature crRNA that is base-paired to trans-activating crRNA (tracrRNA) forms a two-RNA structure that directs the CRISPR-associated protein Cas9 to introduce double-stranded (ds) breaks in target DNA. At sites complementary to the crRNA-guide sequence, the Cas9 HNH nuclease domain cleaves the complementary strand, whereas the Cas9 RuvC-like domain cleaves the noncomplementary strand. The dual-tracrRNA:crRNA, when engineered as a single RNA chimera, also directs sequence-specific Cas9 dsDNA cleavage. Our study reveals a family of endonucleases that use dual-RNAs for site-specific DNA cleavage and highlights the potential to exploit the system for RNA-programmable genome editing.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genome editing. The new frontier of genome engineering with CRISPR-Cas9.

              The advent of facile genome engineering using the bacterial RNA-guided CRISPR-Cas9 system in animals and plants is transforming biology. We review the history of CRISPR (clustered regularly interspaced palindromic repeat) biology from its initial discovery through the elucidation of the CRISPR-Cas9 enzyme mechanism, which has set the stage for remarkable developments using this technology to modify, regulate, or mark genomic loci in a wide variety of cells and organisms from all three domains of life. These results highlight a new era in which genomic manipulation is no longer a bottleneck to experiments, paving the way toward fundamental discoveries in biology, with applications in all branches of biotechnology, as well as strategies for human therapeutics. Copyright © 2014, American Association for the Advancement of Science.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                10 January 2022
                2021
                : 12
                : 768233
                Affiliations
                [1] 1Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET , Hurlingham, Argentina
                [2] 2Laboratorio de Agrobiotecnología, IPADS (INTA – CONICET) , Balcarce, Argentina
                [3] 3Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata , Balcarce, Argentina
                [4] 4Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Buenos Aires, Argentina
                Author notes

                Edited by: Marcos Egea-Cortines, Universidad Politécnica de Cartagena, Spain

                Reviewed by: Allah Bakhsh, University of the Punjab, Pakistan; Satoko Non-aka, University of Tsukuba, Japan

                *Correspondence: Cecilia Vazquez Rovere, vazquez.cecilia@ 123456inta.gob.ar

                These authors have contributed equally to this work and share first authorship

                This article was submitted to Technical Advances in Plant Science, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2021.768233
                8784693
                35082806
                ab853250-d347-45cb-b259-eca607b728d7
                Copyright © 2022 Nahirñak, Almasia, González, Massa, Décima Oneto, Feingold, Hopp and Vazquez Rovere.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 31 August 2021
                : 09 December 2021
                Page count
                Figures: 1, Tables: 2, Equations: 0, References: 176, Pages: 19, Words: 15269
                Funding
                Funded by: Fondo para la Investigación Científica y Tecnológica, doi 10.13039/501100006668;
                Funded by: Instituto Nacional de Tecnología Agropecuaria, doi 10.13039/501100010677;
                Categories
                Plant Science
                Review

                Plant science & Botany
                potato,genetic engineering,biotechnology,agrobacterium,new breeding techniques,genome editing

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content166

                Cited by4

                Most referenced authors2,309