19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Alternative splicing of Cav1.2 channel exons in smooth muscle cells of resistance-size arteries generates currents with unique electrophysiological properties.

      American Journal of Physiology - Heart and Circulatory Physiology
      Alternative Splicing, physiology, Amino Acid Sequence, Animals, Base Sequence, Calcium Channels, L-Type, chemistry, genetics, Cells, Cultured, Cerebral Arteries, cytology, Cerebrovascular Circulation, Exons, Molecular Sequence Data, Muscle, Smooth, Vascular, Myocytes, Smooth Muscle, Patch-Clamp Techniques, Protein Structure, Tertiary, Rats, Rats, Sprague-Dawley, Vascular Resistance

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Voltage-dependent calcium (Ca(2+), Ca(V)1.2) channels are the primary Ca(2+) entry pathway in smooth muscle cells of resistance-size (myogenic) arteries, but their molecular identity remains unclear. Here we identified and quantified Ca(V)1.2 alpha(1)-subunit splice variation in myocytes of rat resistance-size (100-200 microm diameter) cerebral arteries. Full-length clones containing either exon 1b or the recently identified exon 1c exhibited additional primary splice variation at exons 9*, 21/22, 31/32, and +/- 33. Real-time PCR confirmed the findings from full-length clones and indicated that the major Ca(V)1.2 variant contained exons 1c, 8, 21, and 32+33, with approximately 57% containing 9*. Exon 9* was more prevalent in clones containing 1c (72%) than in those containing 1b (33%), suggesting exon-selective combinatorial splicing. To examine the functional significance of this splicing profile, membrane currents produced by each of the four exon 1b/c/ +/- 9* variants were characterized following transfection in HEK293 cells. Exon 1c and 9* caused similar hyperpolarizing shifts in both current-voltage relationships and voltage-dependent activation of currents. Furthermore, exon 9* induced a hyperpolarizing shift only in the voltage-dependent activation of channels containing exon 1b, but not in those containing exon 1c. In contrast, exon 1b, 1c, or +9* did not alter voltage-dependent inactivation. In summary, we have identified the Ca(V)1.2 alpha(1)-subunit splice variant population that is expressed in myocytes of resistance-size arteries and the unique electrophysiological properties of recombinant channels formed by exon 1 and 9* variation. The predominance of exon 1c and 9* in smooth muscle cell Ca(V)1.2 channels causes a hyperpolarizing shift in the voltage sensitivity of currents toward the physiological arterial voltage range.

          Related collections

          Author and article information

          Comments

          Comment on this article

          scite_
          39
          0
          41
          0
          Smart Citations
          39
          0
          41
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content107

          Cited by11