22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Establishment Limitation Constrains the Abundance of Lactic Acid Bacteria in the Napa Cabbage Phyllosphere

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Patterns of phyllosphere diversity have become increasingly clear with high-throughput sequencing surveys, but the processes that control phyllosphere diversity are still emerging. Through a combination of lab and field experiments using Napa cabbage and lactic acid bacteria (LAB), we examined how dispersal and establishment processes shape the ecological distributions of phyllosphere bacteria. We first determined the abundance and diversity of LAB on Napa cabbage grown at three sites using both culture-based approaches and 16S rRNA gene amplicon sequencing. Across all sites, LAB made up less than 0.9% of the total bacterial community abundance. To assess whether LAB were low in abundance in the Napa cabbage phyllosphere due to a limited abundance in local species pools (source limitation), we quantified LAB in leaf and soil samples across 51 vegetable farms and gardens throughout the northeastern United States. Across all sites, LAB comprised less than 3.2% of the soil bacterial communities and less than 1.6% of phyllosphere bacterial communities. To assess whether LAB are unable to grow in the phyllosphere even if they dispersed at high rates (establishment limitation), we used a gnotobiotic Napa cabbage system in the lab with experimental communities mimicking various dispersal rates of LAB. Even at high dispersal rates, LAB became rare or completely undetectable in experimental communities, suggesting that they are also establishment limited. Collectively, our data demonstrate that the low abundance of LAB in phyllosphere communities may be explained by establishment limitation.

          IMPORTANCE The quality and safety of vegetable fermentations are dependent on the activities of LAB naturally present in the phyllosphere. Despite their critical role in determining the success of fermentation, the processes that determine the abundance and diversity of LAB in vegetables used for fermentation are poorly characterized. Our work demonstrates that the limited ability of LAB to grow in the cabbage phyllosphere environment may constrain their abundance on cabbage leaves. These results suggest that commercial fermentation of Napa cabbage proceeds despite low and variable abundances of LAB across different growing regions. Propagule limitation may also explain ecological distributions of other rare members of phyllosphere microbes.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample.

          The ongoing revolution in high-throughput sequencing continues to democratize the ability of small groups of investigators to map the microbial component of the biosphere. In particular, the coevolution of new sequencing platforms and new software tools allows data acquisition and analysis on an unprecedented scale. Here we report the next stage in this coevolutionary arms race, using the Illumina GAIIx platform to sequence a diverse array of 25 environmental samples and three known "mock communities" at a depth averaging 3.1 million reads per sample. We demonstrate excellent consistency in taxonomic recovery and recapture diversity patterns that were previously reported on the basis of metaanalysis of many studies from the literature (notably, the saline/nonsaline split in environmental samples and the split between host-associated and free-living communities). We also demonstrate that 2,000 Illumina single-end reads are sufficient to recapture the same relationships among samples that we observe with the full dataset. The results thus open up the possibility of conducting large-scale studies analyzing thousands of samples simultaneously to survey microbial communities at an unprecedented spatial and temporal resolution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microbial biogeography: putting microorganisms on the map.

            We review the biogeography of microorganisms in light of the biogeography of macroorganisms. A large body of research supports the idea that free-living microbial taxa exhibit biogeographic patterns. Current evidence confirms that, as proposed by the Baas-Becking hypothesis, 'the environment selects' and is, in part, responsible for spatial variation in microbial diversity. However, recent studies also dispute the idea that 'everything is everywhere'. We also consider how the processes that generate and maintain biogeographic patterns in macroorganisms could operate in the microbial world.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Microbiology of the Phyllosphere

                Bookmark

                Author and article information

                Journal
                Applied and Environmental Microbiology
                Appl Environ Microbiol
                American Society for Microbiology
                0099-2240
                1098-5336
                July 01 2019
                June 17 2019
                April 19 2019
                : 85
                : 13
                Article
                10.1128/AEM.00269-19
                6581170
                31003989
                b5ed2f61-a466-44b9-b101-c38475a716d9
                © 2019
                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content804

                Cited by24

                Most referenced authors1,783